Santa Monica Mountains Mountain Lions
Do you have questions or comments about this model? Ask them here! (You'll first need to log in.)
WHAT IS IT?
A model of the Santa Mondica Mountains mountain lion population, and the effect of having a major highway separating lion habitat. This is based on an actual use case (see link in the Credits and References section).
HOW IT WORKS
Lions from both sides of the highway try to migrate to the other side of the highway in a weighted random manner. There's a relatively high chance they'll be run over on the highway. There is an option to create a corridor that allows movement from north to south and vice-versa, while protecting lions from death on the highway. There is also a chance the lions will breed and produce new lions, determined by the repro-success slider (newly "born" lions turn red).
HOW TO USE IT
Setup and Go, or optionally, Add Corridor, change initial number of lions, and or change reproductive success rate, then Setup and Go. A monitor and a graph keep track of the lion population. The model ends when there are no more lions left, or when the lions overpopulate (count > 1000).
THINGS TO NOTICE
Adding the corridor generally extends the time until lion "extinction" by about 30 percent. The reproductive success seems to have more effect than the initial number of lions.
THINGS TO TRY
Try running multiple times, both with and without the corridor. There is a BehaviorSpace experiment included that runs the model 20 times each, with the corridor and without it. Try different repro-success (reproductive success) settings.
EXTENDING THE MODEL
Could potentially add a prey species, such as deer, which the lions would then gain energy from. Deer would be equally vulnerable to road traffic. Also, the corridor could be widened, or more than one corridor could be used. Actual cars could be added, although the chances of dying on the road would or should be the same.
NETLOGO FEATURES
The model uses weighted random direction, where southern lions are slightly more likely to move north, and northern lions are slightly more likely to move south.
RELATED MODELS
Wolf Sheep Predation is somewhat similar.
CREDITS AND REFERENCES
See this story in the LA Times: http://www.latimes.com/local/lanow/la-me-ln-wildlife-corridor-20160422-story.html
Comments and Questions
extensions [rnd] to setup clear-all ask patches [ setup-world ] add-lions reset-ticks end to go move-lions ask turtles [reproduce-lions] tick if count turtles = 0 [stop] ;;stop when all lions are dead if count turtles >= 1000 [stop] ;;stop when lions overpopulate end to setup-world ;; patch procedure...road gets black patches, all other areas are green ifelse pycor < 2 and pycor > -2 [ set pcolor black ] [ set pcolor green ] ifelse add-corridor? [ if pxcor >= -2 and pxcor <= 2 [ set pcolor green ] if pxcor = -3 or pxcor = 3 and pycor > -2 and pycor < 2 [ set pcolor red] ] [] end to-report random-between [ min-num max-num ] ;;process for reporting a random number between two numbers report random-float (max-num - min-num) + min-num end to add-lions ;;add lions, but don't start any of them on the road create-turtles num-lions / 2 ;;south lions [set color 45 set shape "cat" setxy random-xcor random-between min-pycor -2] create-turtles num-lions / 2 ;;north lions [set color 45 set shape "cat" setxy random-xcor random-between max-pycor 2] end to move-lions ask turtles [ ifelse random 10 > 7 ;;30% chance of choosing a weighted random angle, or else choose random angle [set heading choose-angle] [right random 360] forward 1 if pcolor = black [ if random 10 > 5 [ die ;;lions have a 50% chance of dying on each road patch ] ] if pcolor = red [ ;;lions bounce off of the guard rails right 180 forward 1 ] ] end to-report choose-angle ;;process for reporting weighted random angle let values [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360] let probN [0.02 0.012 0.01 0.009 0.008 0.008 0.008 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.007 0.008 0.008 0.008 0.009 0.01 0.012 0.02] let probS [0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.007 0.008 0.008 0.009 0.01 0.012 0.016 0.021 0.016 0.012 0.01 0.009 0.008 0.008 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001] let probabilities ifelse-value (pycor < 0) [probN] [probS] ;;northern lions biased south, southern lions biased north let pairs (map list values probabilities) report first rnd:weighted-one-of-list pairs [[p] -> last p] end to reproduce-lions let mate one-of other turtles-here if mate != nobody [ if random 100 <= repro-success [ ;;chance of successful reproduction if another lion is here at the same patch hatch 1 [right random 360 forward 5 set color red] ;;moving 5 helps prevent overclustering of newly hatched lions ] ] end
There is only one version of this model, created over 7 years ago by Pete Aniello.
Attached files
No files
This model does not have any ancestors.
This model does not have any descendants.