Covid-19 variation on the theme

No preview image

1 collaborator

Default-person Davide Vignoni (Author)

Tags

covid19 

Tagged by Davide Vignoni about 4 years ago

peak displacementg 

Tagged by Davide Vignoni about 4 years ago

social mobility 

Tagged by Davide Vignoni about 4 years ago

Visible to everyone | Changeable by everyone
Model was written in NetLogo 6.0.3 • Viewed 259 times • Downloaded 18 times • Run 0 times
Download the 'Covid-19 variation on the theme' modelDownload this modelEmbed this model

Do you have questions or comments about this model? Ask them here! (You'll first need to log in.)


Info tab cannot be displayed because of an encoding error

Comments and Questions

Please start the discussion about this model! (You'll first need to log in.)

Click to Run Model

turtles-own
  [ sick?                ;; if true, the turtle is infectious
    remaining-immunity   ;; how many weeks of immunity the turtle has left
    sick-time            ;; how long, in days, the turtle has been infectious
    age ]                ;; how many weeks old the turtle is

globals
  [ %infected            ;; what % of the population is infectious
    %immune              ;; what % of the population is immune
    max-%infected        ;; maximun % infected population reached (at the peak)
    peak                 ;; day of the peak
    alive                ;; total population alive that tick
    now-infected         ;; number of people infected at the current day
    immune               ;; number of people immune at the present day
    total-infected       ;; total infected from the beginning
    lifespan             ;; the lifespan of a turtle
    chance-reproduce     ;; the probability of a turtle generating an offspring each tick
    chance-recover       ;; the probability of recovery at each tick
    carrying-capacity    ;; the number of turtles that can be in the world at one time
    immunity-duration ]  ;; how many weeks immunity lasts

;; The setup is divided into four procedures

to setup
  clear-all
  reset-ticks
  setup-constants
  setup-turtles
  update-global-variables
  update-display

  reset-ticks
end 

;; We create a variable number of turtles of which 1 are infectious,
;; and distribute them randomly

to setup-turtles
  create-turtles number-people
    [ setxy random-xcor random-ycor
      set age random lifespan
      set sick-time 0
      set remaining-immunity 0
      if age < 10 * 52 * 7 [set color blue]
      if age > 60 * 52 * 7 [set color yellow]
      set size .7 ;; easier to see
      get-healthy ]
  ask n-of init-infected turtles
    [ get-sick ]
  set total-infected (count turtles with [sick?])
end 

to get-sick ;; turtle procedure
  set sick? true
  set remaining-immunity 0
  set total-infected (total-infected + 1)
end 

to get-healthy ;; turtle procedure
  set sick? false
  set remaining-immunity 0
  set sick-time 0
end 

to become-immune ;; turtle procedure
  set sick? false
  set sick-time 0
  set remaining-immunity immunity-duration
  ask my-links [ die ] ;; remove link to turtle who infected us, if there was one
end 

;; This sets up basic constants of the model.

to setup-constants
  set lifespan 80 * 52 * 7     ;; 80 times 52 weeks times 7 days = 50 years = 2600 weeks old = 18200 days
  set carrying-capacity 1000
  set chance-reproduce 0.005 ;; birth rate per 1000 people per day
  set immunity-duration 52 * 7
  if Weather = "Hot-Humid" [set chance-recover .98]
  if Weather = "Hot-Dry" [set chance-recover .96]
  if Weather = "Cold-Dry" [set chance-recover .95]
  if Weather = "Cold-Humid" [set chance-recover .94]
end 

to go
  if all? turtles [not sick?]
  [stop]
  ask turtles [
    get-older
    move
    if sick? [ recover-or-die ]
    ifelse sick? [ infect ] [ reproduce ]
  ]
  update-global-variables
  update-display
  tick
end 

to update-global-variables
  if count turtles > 0
    [ set %infected (count turtles with [ sick? ] / count turtles) * 100
      set %immune (count turtles with [ immune? ] / count turtles) * 100
      set alive (count turtles)
      set now-infected (count turtles with [sick?])
      set immune (count turtles with [immune?])
      if %infected > max-%infected [set peak ticks + 1]
      if %infected > max-%infected [set max-%infected %infected]
      ;;set peak ticks + 1]
      ]
end 

to update-display
  ask turtles
    [ if shape != turtle-shape [ set shape turtle-shape ]
      set label ifelse-value show-age? [ floor (age / 364) ] [ "" ]
      set color ifelse-value sick? [ red ] [ ifelse-value immune? [ grey ] [ green ] ] ]
  stop-inspecting-dead-agents
  if watch-a-person? and subject = nobody
    [ watch one-of turtles with [ not hidden? ]
      clear-drawing
      ask subject [ pen-down ]
      inspect subject ]
  if not watch-a-person? and subject != nobody
    [ stop-inspecting subject
      ask subject
        [ pen-up
          ask my-links [ die ] ]
      clear-drawing
      reset-perspective ]
  ask patches [
  if Weather = "Hot-Humid" [set pcolor 68]
  if Weather = "Hot-Dry" [set pcolor 48]
  if Weather = "Cold-Dry" [set pcolor 38]
  if Weather = "Cold-Humid" [set pcolor 108]
  ]
end 

;;Turtle counting variables are advanced.

to get-older ;; turtle procedure
  ;; Turtles die of old age once their age exceeds the
  ;; lifespan (set at 80 years in this model).
  set age age + 1
  if age > lifespan [ die ]
  if age > 60 * 52 * 7 [ set chance-recover .93]
  if age < 60 * 52 * 7 [ set chance-recover .97]
  if immune? [ set remaining-immunity remaining-immunity - 1 ]
  if sick? [ set sick-time sick-time + 1 ]
end 

;; Turtles move about at random.

to move ;; turtle procedure
  rt random 100
  lt random 100
  fd mobility
end 

;; If a turtle is sick, it infects other turtles on the same patch.
;; Immune turtles don't get sick.

to infect ;; turtle procedure
  ask other turtles-here with [ not sick? and not immune? ]
    [ if random-float 100 < infectiousness
      [ get-sick
        if self = subject             ;; if its the watched turtle getting sick
          [ create-link-with myself   ;; create a link with the one that infected it
            [ set color red
              set thickness .3 ] ] ] ]
end 

;; Once the turtle has been sick long enough, it
;; either recovers (and becomes immune) or it dies.

to recover-or-die ;; turtle procedure
  if sick-time > duration * 7                       ;; If the turtle has survived past the virus' duration, then
    [ ifelse random-float 100 < chance-recover * 100   ;; either recover or die
      [ become-immune ]
      [ die ] ]
end 

;; If there are less turtles than the carrying-capacity
;; then turtles can reproduce.

to reproduce
  if count turtles < carrying-capacity and random-float 100 < chance-reproduce
    [ hatch 1
      [ set age 1
        lt 45 fd 1
        pen-up ;; in case we're hatched from the watched turtle
        get-healthy ] ]
end 

to-report immune?
  report remaining-immunity > 0
end 

to startup
  setup-constants ;; so that carrying-capacity can be used as upper bound of number-people slider
end 


; Copyright 1998 Uri Wilensky.
; See Info tab for full copyright and license.

There are 2 versions of this model.

Uploaded by When Description Download
Davide Vignoni about 4 years ago at least 1 init. infected! Download this version
Davide Vignoni about 4 years ago Initial upload Download this version

Attached files

File Type Description Last updated
COVID_19_DaVig view.png png view about 4 years ago, by Davide Vignoni Download
Screenshot_2020-04-14_14:34:54.png png screenshot about 4 years ago, by Davide Vignoni Download

This model does not have any ancestors.

This model does not have any descendants.