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Figure 1 – From Ref 2. 
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2 Purpose 
To understand the physics of Atwood’s Machine and its connection to the strange curve 

associated with it. 

3 Description 
In Atwood’s machine two masses are hung over a 
pulley.  One mass is a high above the floor, and the 
other rests on the floor.  The higher mass is heavier.  As 

gravity pulls the higher mass down, the lower mass 
rises.  The goal is to use the heavier mass to do work by 

raising the lower mass.  Thus the ‘useful work’ is only 
the work performed in raising the lower mass. 
 

The goal here is to replicate the graph shown in Ref 2 
and to understand how it comes together.  (Shown at 

right.) 

3.1 Assignment of Variable Names 
In this NTF I use a number of variables, as follows: 

 Mh = higher heavier mass; the h stands for heavier, as the masses switch places later. 

 Ml = lower lighter mass; the l stands for lighter. 

http://en.wikipedia.org/wiki/Atwood_Machine
http://www.eoearth.org/view/article/154526/
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 D = distance from Mh to floor at start, i.e. the distance that Mh falls; D is also the distance 

that Ml rises because they are coupled. 

 T = time required for Mh to fall to the floor.  T is also the time it takes for Ml to rise because 
they are coupled. 

 Mt = Mh + Ml = the sum of the masses. 

 Md = Mh – Ml = the difference between the masses. 

 g = acceleration due to gravity ≈ 9.8 m/s2. 

 A = actual acceleration of the coupled mass assembly (Ml rising and Mh falling). 

 Fh and Fl = gravitational forces on Mh and Ml respectively. 

 Ft = total force on coupled mass assembly. 

 Other variables will be defined as needed. 

4 Step A – Solve for actual acceleration (A) of the coupled mass 
assembly 

 

Ft = Fh – Fl 
But Ft = Mt*A 

So (Fh-Fl) = Mt*A 
(Mhg-Mlg) = Mt*A 
(Mh-Ml)*g = Mt*A 

 

A =  g ∗
M𝑑

𝑀𝑡

 
Equ 1 

 

5 Step B – Solve for the drop time – Td  
 
D = ½ * A * T2 

Td = (2*D/A)1/2  

T𝑑 = (
2𝐷

𝐴
)
1 2⁄

= (
2𝐷𝑀𝑡

𝑔𝑀𝑑

)
1 2⁄

 
Equ 2 

 

6 Step C – Solve for the velocity of the mass assembly when the heavy 
mass hits the floor. 

 
Vf = final velocity = ATd 

𝑉𝑓 = 𝐴𝑇𝑑 = (2𝐷𝐴)1 2⁄ = (
2𝐷𝑔𝑀𝑑

𝑀𝑡

)
1 2⁄

 
Equ 3 
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7 Step D – Solve for the total kinetic energy of the system when the heavy 

mass hits the floor. 
 

Ek = kinetic energy at end = ½ * Mt * Vf
2  

 

𝐸𝑘 = (
𝑀𝑡

2
)(𝑉𝑓

2) =
𝑀𝑡

2
×

2𝐷𝑔𝑀𝑑

𝑀𝑡

= 𝐷𝑔𝑀𝑑 
Equ 4 

 

 

This kinetic energy becomes waste heat when the heavier mass Mh (now the lower mass) hits the 
floor (transferring its kinetic energy as heat to the floor).  [ What about the kinetic energy of the 

mass Ml?  It is expended as sound and heat as it bobs about at the top of its climb and the 
elasticity of the string at first absorbs energy, then expends it.]  
 

We could also call this the work expended (We) as the Atwood’s Machine runs. 
 We is equivalent by definition to Ek 

8 Step E – Make formulae for: 
a) The useful work done – Wu is calculated as force times distance: 

𝑊𝑢 = 𝐷𝑔𝑀𝑙 Equ 5 

 

 
b) The total work done – Wt is calculated as the sum of wasted energy and useful work: 

 Wt = Ek + Wu  
 

𝑊𝑡 = 𝐷𝑔𝑀𝑑 + 𝐷𝑔𝑀𝑙 = 𝐷𝐺(𝑀ℎ − 𝑀𝑙 + 𝑀𝑙) = 𝐷𝑔𝑀ℎ Equ 6 

 

 
c) The efficiency – E is calculated as the useful work over total work: 
 E = Wu/Wt  

 

E =
𝐷𝑔𝑀𝑙

𝐷𝑔𝑀ℎ

=
𝑀𝑙

𝑀ℎ

 
Equ 7 
 

 
d) The Power – Ps is calculated as useful work per second. 

 Ps = Wu/T  
 

P𝑠 =
𝐷𝑔𝑀𝑙

(
2𝐷𝑀𝑡
𝑔𝑀𝑑

)
1 2⁄

= (
(𝐷𝑔𝑀𝑙)

2𝑔𝑀𝑑

2𝐷𝑀𝑡

)

1/2

= 𝑀𝑙 (
𝐷𝑔3𝑀𝑑

2𝑀𝑡

)

1/2

 
Equ 8 

 

 

D, g and Mt are constants.  Ml and Md are variables.   
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I note that this concept of ‘power’ is really tricky and I am unsure that I understand it.  For 
example, if we are talking about a light bulb, the power of the bulb is measured in watts, and it is 

calculated as the energy expended in Joules per second.  Strictly speaking Wu is not expended by 
Atwood’s machine (AM), but is transformed from gravitational potential energy associated with 

Mh into gravitational energy associated with Ml. 
 
For that reason I have labelled this version of power as Ps, in which the ‘s’ stands for ‘stored’.   

 
But, we can also define power as the energy expended per second. 

Pe = We/T where the ‘e’ stands for ‘expended’. 
 
 

 
 

𝑃𝑒 =
𝐷𝑔𝑀𝑑

(2𝐷𝑀𝑡
𝑔𝑀𝑑

⁄ )

= (
𝐷𝑔3𝑀𝑑

3

2𝑀𝑡

)

1 2⁄

 
 

Equ 9 

 
The perspective in which energy is consumed and expelled would seem to me to be the more 
standard definition of power.  However, both are measures of energy per second, whether it is 

energy transformed and stored per second, or energy expended and expelled to a sink per second.  
So, both are valid concepts of ‘power’. 

9 Step F – Make a scatter graph of Atwood’s Machine’s Power (Pam) vs 
Efficiency. 

Neither equation 8 nor 9 can be plotted directly using Excel since they are not functions of a 

single variable, nor are the variables independent of each other.  I therefore use a scatter graph.  
This means I can calculate E for sets of inputs, and Ps (or Pe) for the same variables, and plot the 

points that result on a P vs E graph.  For reference purposes, I am calling the curve so produced 
the Pam curve, meaning the power of Atwood’s Machine.  So, using the above formulae (See the 
Ref 4 spreadsheet), I tried three things: 

 I set Mh to 10 and ranged Ml from 0 to 10.  (See Figure 2.) 

 I set Ml to 10 and ranged Mh from 10 to 20.  (See Figure 3.) 

 I set Mt constant at 20 and incrementally changed Ml and Mh such that Mh goes from 10 to 20 
while Ml goes from 10 to 0.  (See Figure 4.) 
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Figure 3 – Power vs Efficiency in Atwood’s Machine 

 

 

Figure 2 – Power vs Efficiency in Atwood’s Machine  
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 Figure 4 – Power vs Efficiency in Atwood’s Machine  

 

y = -1016x2 + 1031.3x + 13.337
R² = 0.9803
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Figure 4 seems to be the graph I am looking for.  It looks like the one in the Ref 2 article written 
by Robert Costanza.  But, this shape in Figure 3 also seems very familiar to me.  I could see that 

as soon as I read the Ref 2 article, and was confirmed in my opinion when I tried to put a 
quadratic trend line through it.  This looks remarkably similar in shape to the envelope (the 

bounding curve or ‘E-curve’) I saw for the space of entropic indices derived from states in the 
state space of an EiLab system.  (See figure 5 below.)   Note how the quadratic trend line is too 
pointy at the top, and too wide at the bottom, in both graphs. 

 
Figure 4 is a scatter graph.  It does not require knowledge of the formula for the function being 

plotted in terms of the single variable on the horizontal axis.  It only requires that Ps and E can 
each be calculated, for some set of variables, and then together plotted as a point. 
 

This Figure 5 graph is ‘entropic index’ versus the total wealth in an extremely simple agent-
based model economy in which the number of agents and total cash are conserved.  This figure 4 

graph is pulled from the Ref 6 draft paper.  In this capital exchange economy (see Ref 5 for a 
relatively complete description) wealth is constrained to $1, $2, $3 or $4, and there are 8 agents.  
Since wealth is conserved, the system is endowed with an amount of cash at the beginning, and 

that determines the possible means of distribution.  So the minimum total wealth is $8 (each 
agent gets $1, and no transactions are allowed), and the maximum total wealth is $32 (each agent 

gets $4, and no transactions are allowed).  No transactions are allowed because there is only one 
way to allocate the wealth in those two extreme cases.  For any initial endowment strictly 
between $9 and $31 more options are opened.  For example, an endowment of $10 can be 

distributed as 7 agents get $1 and 1 agent gets $3, or it can be 6 agents get $1 and 2 agents get $2 
each.  There are two distinct ways to distribute the $10, two distinct value of entropic index 

computable, and two ‘points’ plotted on the graph for the $10 total wealth level. 
 
But, when the initial endowment of total wealth is exactly $20, then there are 13 ways to allocate 

the wealth, and there are 13 distinguishable states in the entire state space of the system, and 
seven distinct values of entropic index possible.   See the middle column of points that reach all 

the way up to entropic index of 1.00.   The 13 states are represented by the thirteen points in the 
centre of the graph, but 12 occur in overlapping positions, so only seven are visible in the graph.  
Each vertical column of states (points or dots) represents the entire state space of the closed 

system for a given initial endowment of total wealth.  The circled dots represent the maximum 
entropic index possible for the associated total wealth in its closed system.  When the model is 

run, the entropic index does indeed tend to rise to the indicated maxima, perturbed by severe 
fluctuations.   
 

The maxima do not form a quadratic, as can be seen by the least squares quadratic fit (for which 
the equation is provided).  The points are the set of all states for all possible initial endowments 

for this system.  There is a draft paper in which I develop an expression for the bounding curve 
which encloses all of these points (equation 22 at Ref 7, excerpted and included below).  That 
curve looks to be very similar to the curve that comes out of the AM.  (Compare figures 1, 4 and 

5.) 
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10 Discussion 
I wonder if there is an equation that expresses Ps (power of storage) in terms of E (efficiency).  
Now, that would be cool!  Then I could compare it with my equation for the enclosing curve (E-

Curve) of figure 5 (To be clear, the E-curve is not shown in figure 5, but can be imagined as the 
bounding curve passing just above the maximal values shown as circled dots.) 
 

What is the formula for Ps in terms of E and constants?  Can this be done?  In other words, can 
this be transformed into the form Ps = c * f(E) on the interval 0 <= E <= 1, where c is a constant.  

The constant c would be some calculated value depending on the constants of the problem.  In 
this case Mt, D, and g. 
 

So, my goal is to produce something like this: 

P𝑠 = c ∗ f(E) Equ 10 
 

 

Here are some equations to work from: 
 

𝑃𝑠 = 𝑊𝑢
𝑇⁄  Equ 11 

 

E = 𝑊𝑢
(𝑊𝑢 + 𝑊𝑒)

⁄ => 𝑊𝑢 =
𝐸

(1 − 𝐸)
𝑊𝑒 

Equ 12 

 

 
Substitute Wu from equation 12, We from equation 4, and T from equation 2 into equation 11. 

𝑃𝑠 =
𝐸

(1 − 𝐸)
× 𝐷𝑔𝑀𝑑 × (

𝑔𝑀𝑑

2𝐷𝑀𝑡

)
1 2⁄

 
Equ 13 

 

 
Squaring temporarily to avoid the root: 

𝑃𝑠
2 = (

𝐸

(1 − 𝐸)
)
2

× 𝐷2𝑔2𝑀𝑑
2 ×

𝑔𝑀𝑑

2𝐷𝑀𝑡

 
Equ 14 
 

 
Pulling out constants: 

𝑃𝑠
2 = (

𝐷2𝑔3

2𝐷𝑀𝑡

)(
𝐸

(1 − 𝐸)
)
2

× 𝑀𝑑
3 

Equ 15 

 

 
Putting together Mt=Ml+Mh; Md=Mh-Ml; and E=Ml/Mh we get: 

𝑀𝑑 = 𝑀𝑡

(1 − 𝐸)

(1 + 𝐸)
 

Equ 16 
 

 
Subbing equation 16 into 15 produces: 

𝑃𝑠
2 = (

𝐷𝑔3𝑀𝑡
2

2
)

𝐸2(1 − 𝐸)

(1 + 𝐸)3
 

Equ 19 

 

 

Take the square root, and voila: 
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𝑃𝑠 = c f(E) =  √
𝐷𝑔3𝑀𝑡

2

2

2

× √
𝐸2(1 − 𝐸)

(1 + 𝐸)3

2

 

Equ 20 
 

 
 
Putting this equation back into an Excel spreadsheet (Ref 4) I am able to produce this graph in 

Figure 6. 
 

On the other hand, my equation for the enveloping curve for figure 5 (below) is as follows, as 
developed in Ref 8 as equation number 22. 
 

 

𝐸𝐻(𝐾,𝐴)(𝑤) =
1

ln(2)
[(

𝐴𝐾 − 𝑤

𝐴(𝐾 − 1)
× 𝑙𝑛 (

𝐴(𝐾− 1)

𝐴𝐾 − 𝑤
)) + (

𝑤 − 𝐴

𝐴(𝐾 − 1)
× 𝑙𝑛 (

𝐴(𝐾 − 1)

𝑤 − 𝐾
))] 

 
Equ (22) 
of Ref 8 

 
This equation was developed from first principles, as is equation 20 above, and verified using 
MS Excel.  Here K is the number of bins in a histogram in which wealth is binned in increments 

of $1 starting at $1 up to $K; A is the number of agents; and w is the total initial endowment of 
wealth allocated to the agents from minimum allowed wealth ($A) to maximum allowed wealth 

($KA).  The analogue of equation 22 (in Ref 8) with equation 20 (in this note) is as follows: 

- 𝐸𝐻(𝐾,𝐴)(𝑤) ↔ 𝑃𝑠(𝐸) 

- 𝑤 ↔ 𝐸 

- 
1

ln(2)
↔ 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ↔ √

𝐷𝑔3𝑀𝑡
2

2

2

 

 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

Figure 6 – A test of Ps(E) 

 
Compare this with Figures 1, 4 and 5.  Note the departure from a quadratic trend line. 
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11 Equation for Pe  
 
Using a technique similar to that above I can develop a formula for Pe = c g(E) as follows: 

 
Start with the definition of Pe: 

𝑃𝑒 ≡ 𝐸𝑘
𝑇⁄ ≡ 𝑊𝑒

𝑇⁄  Equ 21 

 

 

By a similar train of logic that led to equation 15 I get: 

𝑃𝑒
2 = (

𝐷2𝑔3

2𝐷𝑀𝑡

) (
𝐸

(1 − 𝐸)
)
2

× 𝑀𝑙
2𝑀𝑑 

Equ 22 
 

 
But Ml

2 Md resolves to: 

 

𝑀𝑙
2𝑀𝑑 = 𝑀𝑡

3
(1 − 𝐸)

(1 + 𝐸)3
 

Equ 23 
 

 

So, I am a little bothered by this equation 23.  When I compare it to equation 16 there is a 
notable difference.  Equation 16 has an equal power of E top and bottom.  When Md is cubed, the 

top and bottom are both cubic in E.  On the other hand, in this expression the top is linear in E 
and the bottom is cubic in E.  This strikes me as odd, but I see no error. 
 

Ah!  Wait!  Now I see it.  The E on the bottom causes the power to grow to infinity as efficiency 
approaches zero. 

 
Pushing on, I get this expression for Pe: 
 

𝑃𝑒 = c g(E) = √
𝐷𝑔3𝑀𝑡

2

2

2

× √
(1 − 𝐸)3

𝐸2(1+ 𝐸)3

2

 

Equ 24 

 

 

Putting this into a spreadsheet, I get the Figure 7 graph. 
 

 
 
 

 
 

 
 
 

 
 

 



Orrery Software 11 NTF Atwood’s Machine 

 

 

 

 

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 

12 Yet To Resolve 
I am almost certain that this enveloping curve that describes maximum entropy for a simple 
closed economy is the same shape as the maximum power curve for Atwood’s Machine, which is 

a semi-closed mechanical system.   
 

The stark reality here is a study of thermodynamic power generation in a mechanical system, and 
a study of the ‘economic entropy’ generation in an economic system apparently produce very 
similar curves having a very peculiar shape, which is expressed by two very different equations. 

 
I have two relatively trustworthy equations that describe this type of curve.   But they come from 

dramatically different phenomena, and look radically different.  I cannot see how these two 
wildly different equations can be reconciled. 
 

So, as a straight- forward and not too sophisticated first step towards resolving these equations, I 
will do a transformation of variables.  First, I will copy the two formulae and give them a new 

number within this note for easy reference: 
 
The equation for Ps is equation 20, above, copied here and renumbered as equation 25: 

 

Figure 7 – A test of Pe(E) 

 
As efficiency approaches 1 the energy expended and expelled approaches zero. 
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𝑃𝑠 = c f(E) =  √
𝐷𝑔3𝑀𝑡

2

2

2

× √
𝐸2(1 − 𝐸)

(1 + 𝐸)3

2

 

Equ 25 
 

 
The equation for the E-curve (enveloping curve) of the space of all entropic indices associated 
with the set of histograms H(K,A) is given by equation 22 of Ref 4, copied here and renumbered 

as equation 26: 
 

 

𝐸𝐻(𝐾,𝐴)(𝑤) =
1

ln(2)
[(

𝐴𝐾− 𝑤

𝐴(𝐾− 1)
× 𝑙𝑛 (

𝐴(𝐾 − 1)

𝐴𝐾 − 𝑤
)) + (

𝑤 − 𝐴

𝐴(𝐾− 1)
× 𝑙𝑛 (

𝐴(𝐾− 1)

𝑤 − 𝐾
))] 

 
Equ 26 

 

The domain of equation 26 can be written as Domain(EH(K,A)) = [A, AK].  That is, w has values 
between A and AK inclusively.  The domain of equation 25 can be written as Domain(Ps) = 

[0,1]. 
                 Number line                      Variable          Transformation 
      --------------------------- 

      A--------------------------AK               w 
      0--------------------------AK-A           w-A            Translation left a distance of A. 

      0----------------------------1         (w-A)/(AK-A)    Compression by 1/(AK-A) 
 
Define a variable E: 

 

𝐸 ≡
(𝑤 − 𝐴)

(𝐴𝐾− 𝐴)
 

 

 
Equ 27 

 
There are two key expressions in equation 26 which I will name Z1 and Z2: 
 

 

𝑍1 =
𝐴𝐾 − 𝑤

𝐴(𝐾− 1)
 

 

 
Equ 28 

 

𝑍2 =
𝑤 − 𝐴

𝐴(𝐾− 1)
 

 

 
Equ 29 

 
Surprisingly, if I solve equation 27 for w, then substitute that into 28 and 29, I get these 
expressions for Z1 and Z2: 

 

𝑍1 = (1− 𝐸) 
 

 
Equ 30 

 

𝑍2 = 𝐸 
 

 
Equ 31 
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Then define a new function Is(E) = c h(E), where Is is the entropic index, c is some constant, h(E) 

if a function of E, and E  [0,1]: 
 

 

𝐼𝑠(𝐸) =
1

ln(2)
[((1− 𝐸) × 𝑙𝑛 (

1

(1− 𝐸)
))+ (𝐸× 𝑙𝑛(

1

𝐸
))] 

 

 
Equ 32 

 

Or, as is standard practice with entropy, pulling the negative out front: 
 

 

𝐼𝑠(𝐸) =
−1

ln(2)
[((1− 𝐸) × 𝑙𝑛(1− 𝐸))+ (𝐸× 𝑙𝑛(𝐸))] 

 

 
Equ 33 

Now, that was cool! 

Putting this expression into Excel at Ref 4 we get the now familiar graph in figure 8: 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 

Figure 8 – A test of Is(E) 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

En
tr

o
p

ic
 In

d
e

x

E

Is = c h(E)

Is = c h(E)



Orrery Software 14 NTF Atwood’s Machine 

 

 

 

 

13 Comparison of Ps and Is 
 
To compare the shape of the two curves, I need to scale the Ps curve down by the maximum 

power.  I did this at Ref 4.  See figure 9. 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

Hmm!  The Ps curve is off by a little.  Very interesting!  Also a little disappointing!  I wonder 
why.  I wonder what I get when I compare the Is versus the original curve of Power (See figure 

4.) coming out of the analysis of the Atwood’s Machine; call it PAM.  See figure 10. 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
The disparity between the shape of these two curves makes me want to check on the shape of the 
Pam curve (Figure 4) and the Ps curve (Figure 6).  The results are in figure 11. 

Figure 9 – A Comparison of Ps(E) and Is(E) 
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Figure 10 – A Comparison of PAM(E) and Is(E) 
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I am relieved to find a perfect fit. 

14 Conclusions 
The curve coming out of the study of Atwood’s Machine (that I call Pam) is remarkably similar to 
the curve coming out of the study of economic entropy (that I call Is) as demonstrated in a simple 

capital exchange model.  However, they are not the same. 
 
The first is ever-so-slightly asymmetrical.  The second is not.  The symmetry of the curve arising 

from entropy considerations is reasonable, since it is founded on combinatorial formulae that are 
by definition symmetrical.  So an explanation of the differences does not come from error due, 

for example, to the use of Stirling’s approximation for the entropy surprisals. 
 
Also, I have worked and reworked the equations around the Pam curve enough that I am relatively 

confident that I have not made any mistakes there.  I believe the physics is sound, though the 
definition of two kinds of power (Ps vs Pe) is peculiar.   

 
So, the slight asymmetry must be a fundamental characteristic of power expression. 
 

Finally, it seems my formula for the rate of storage of energy in Atwood’s Machine (Ps) seems to 
correctly recreate the curve Pam. 

Figure 11 – A Comparison of PAM(E) and Ps(E) 
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15 Unresolved Issues 
 What does all this mean? 

16 Material Added 150101 
 

After completing the above, I was concerned that, in using the formula mgd for potential energy 
I might be overlooking an important part because g is an constant and so-called ‘negligible’ bits 

are discarded. 
 
The equation for calculating the complete gravitational potential of a three-body system is: 

 

 

𝐸 = −𝐺 ∑
𝑚𝑖𝑚𝑗

|𝑟𝑖⃑⃑ − 𝑟𝑗⃑⃑ |𝑖<𝑗

 

 
Equ 34 

 

 
Where the position vectors r are from the centre of mass of the system to the centre of mass of 

each mass in the system.  The difference of two such position vectors is a vector from the centre 
of mass of one mass to the centre of mass of the other.  If we let the mass of the Earth be ME then 

this becomes and apply this to the AM we get: 
 

 

𝐸 = −𝐺 [
𝑀𝐿𝑀𝐸

|𝑟𝐿𝐸⃑⃑ ⃑⃑⃑ |
+

𝑀𝐻𝑀𝐸

|𝑟𝐻𝐸⃑⃑⃑⃑ ⃑⃑  |
+

𝑀𝐿𝑀𝐻

|𝑟𝐿𝐻⃑⃑ ⃑⃑  ⃑|
] 

 

 
Equ 35 

 

 
But I am interested in 
the change in 

potential energy.  Let 
RE be the radius of 

the Earth.  Before the 
AM runs rLE = RE and 
rHE = RE+d.  After, 

rLE = RE + D and rHE 

= RE.  E is then Eafter 

– Ebefore.  And, I can 
tell from the diagram 

(Figure xx) that rLH is 
the same before and 
after. 

 
 

 
 
 

Figure xx  
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𝐸 = −𝐺 [(
𝑀𝐿𝑀𝐸

𝑅𝐸 + 𝐷
+

𝑀𝐻𝑀𝐸

𝑅𝐸

+
𝑀𝐿𝑀𝐻

𝑟𝐿𝐻
) − (

𝑀𝐿𝑀𝐸

𝑅𝐸

+
𝑀𝐻𝑀𝐸

𝑅𝐸 + 𝐷
+

𝑀𝐿𝑀𝐻

𝑟𝐿𝐻
)] 

 

 
Equ 36 
 

 

The MLMH terms cancel out exactly.  No approximations there.  I was hoping that would 
happen.  The other terms can be simplified by first giving them a common denominator: 
 

 

𝐸 = −𝐺 [
𝑅𝐸𝑀𝐿𝑀𝐸

𝑅𝐸(𝑅𝐸 + 𝐷)
+

(𝑅𝐸 + 𝐷)𝑀𝐻𝑀𝐸

𝑅𝐸(𝑅𝐸 + 𝐷)
−

(𝑅𝐸 + 𝐷)𝑀𝐿𝑀𝐸

𝑅𝐸(𝑅𝐸 + 𝐷)
−

𝑅𝐸𝑀𝐻𝑀𝐸

𝑅𝐸(𝑅𝐸 + 𝐷)
] 

 

 

Equ 37 
 

 

Pulling out the common denominator and the common factor ME: 

 

𝐸 = −
𝐺𝑀𝐸

𝑅𝐸(𝑅𝐸 + 𝐷)
[𝑅𝐸𝑀𝐿 + (𝑅𝐸 + 𝐷)𝑀𝐻 − (𝑅𝐸 + 𝐷)𝑀𝐿 − 𝑅𝐸𝑀𝐻] 

 

 
Equ 38 
 

 
Then, focusing on the terms with RE, four terms cancel, leaving two: 

 

𝐸 = −
𝐺𝑀𝐸

𝑅𝐸(𝑅𝐸 + 𝐷)
[𝐷𝑀𝐻 − 𝐷𝑀𝐿] 

 

 

Equ 39 
 

 
Which becomes: 

 

𝐸 = −
𝐺𝑀𝐸

𝑅𝐸(𝑅𝐸 + 𝐷)
𝐷𝑀𝐷 

 

 

Equ 40 
 

 
Compare that with the result using MgD for potential energy: 

 

𝐸 = −𝑔𝐷𝑀𝐷  𝑤ℎ𝑒𝑟𝑒 
𝐺𝑀𝐸

𝑅𝐸(𝑅𝐸 + 𝐷)
≅ 𝑔 

 

 

Equ 41 
 

 

Hmm!  G  6.673 x 10-11, ME  5.983 x 1024 kg, and RE  6.368 x 106 m.  Then g would be  

9.847 m/s2.  The D in Atwood’s Machine would need to be kilometers high in order to affect the 
analysis in the third digit after the decimal. 
 


