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2 - Background 

This series of diary notes is a rework of a set of notes partially completed in 2013-2014.  In 2000 

Dr Victor Yakovenko and his student (Drăgulescu ) published a set of eight capital exchange 

models which have come to be known as the BDY model (for Benatti-Drăgulescu-Yakovenko).  

Later, on his website, Dr Yakovenko had produced a demonstration of rising entropy in his BDY 

models, and I decided to do the same in my own agent-based models (ABMs).  This was all with 

the goal of understanding the role of the Maximum Entropy Principle (MEP) and Maximum 

Entropy Production Principle (MEPP) in ABMs such as ModEco or PSoup.  That study and the 

associated diary notes were set aside for a while as I studied Odum’s MPP.  Now, in 2018, I want 

to review, update, and complete this set of diary notes.   

 

Ref A is the paper in which I first saw the BDY models described, and Ref B is a series of email 

in which I discuss entropy with a friend, with comments from Dr Yakovenko.  I had opportunity 

in April 2014 to meet with Dr Yakovenko in Toronto, and Ref C captures my discussion with 

him, and a set of thoughts that occurred to me over the four hours as I drove home again. 

 

Ref D is a draft paper in which I develop a measure of entropy as exhibited in operating ABMs 

similar to the BDY models.  This series of NTFs is being (re-)written in support of that 

document. 

 

Ref E is a technical note describing how to write a custom function in MS Excel.  This skill is 

needed to pursue a study of entropy in ABMs. 

 

Ref F is a note in which I use the combinatorial multinomial coefficient and the basic form of 

“Stirling’s Approximation” of ln(A!) to derive Shannon’s equation for entropy [1] from 

Boltzmann’s equation [2].   

 

Based on Shannon: 

 𝑆𝑆
 = 𝐶𝑆

 × [− ∑ (𝑝𝑖 × ln[𝑝𝑖])𝑘
𝑖=1 ] [1] 

Based on Boltzmann: 

 𝑆𝐵
 = 𝐶𝐵

 × [𝑘𝐵 ln()] [2] 

Boltzmann in terms of Shannon: 

 𝑆𝐵
 ≈ [

𝐶𝐵
 

𝐶𝑆
 ] × 𝐴 × 𝑆𝑆

  [3] 

 

Where 𝐶𝑆
  and 𝐶𝐵

  are dimensionless scaling factors each associated with what I am calling the 

“Shannon regime” of equations, and the “Boltzmann regime”.   In the Boltzmann regime, 𝐶𝐵
  

would be Boltzmann’s constant.  I am not sure what 𝐶𝑆
  would be in the Shannon regime.  In Ref 

F I showed that these two expressions for entropy are related by equation [3]. 

 

The approximation ( symbolized as  ) arises from the use of Stirling’s approximation to convert 

Boltzmann’s formula into Shannon’s formula.  One confusing aspect of the Ref F note is the 

units of measure for the two formulae for entropy. 
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3 - Purpose 

The purpose of this diary note is to investigate issues around units of measure for entropy, so that 

I can better interpret the meaning of my entropy calculations. 

4 - Discussion 

4.1 - Why Explore Units of Measure of Entropy 

After many years of consideration, I have come to believe that entropy is always a dimensionless 

number.  However, it was not immediately clear to me that this was the case.  When preparing 

the Ref F note the intrusion of the factor “A” into equation [3] was a surprise.  It raises a 

question about possible conflict of dimensionality.  And, certainly, the text books and published 

papers that I have read do not say that entropy is dimensionless, and, to the contrary, imply 

otherwise.  So I will explore and record the thoughts that have led me to that conclusion. 

4.2 - What is “Dimensionality”? 

Dimensionality is an abstract concept that underlies all empirical measurements and all 

theoretical mathematical formulae in the hard sciences.  Every number or variable used in a 

formula can have as many as three different parts: a numeric part, an indication of error, and a 

unit of measure.  For example, the area of my patio is about 5.5 square meters, more or less, and 

we might write this as 5.5 [ 0.5] m
2
.  5.5 is the numeric part.  [.05] is the estimated error.  And 

m
2
 is the units of measure.  The dimensionality of this tripartite number is abstracted from the 

part called the “units of measure”. 

 

Dimensionality is a concept best understood by physicists and mathematicians.  In mathematics, 

you cannot add numbers with different units of measure.  For example, 1 centimeter plus 2 

meters cannot be added until you choose a common unit of measure.  The problem is solved by 

converting one unit of measure (centimeters) to the other (meters) and using a common unit. 

The answer is either 2.01 meter, or 201 centimeters.  But dimensionality is more fundamental 

than that.  Suppose the numbers are 1 centimeter and 2 square meters.  Now we have a 

measurement of distance and one of area.  These measurements are associated with two 

fundamentally different physical quantities – distance and area.  Not only can they not be added 

as is, there is no conversion from distance to area that would make them compatible with the 

concept of addition.  They do not just suffer from different units of measure – they suffer from 

different dimensionality.  They have incommensurable units of measure.   

 

But, here’s a curious thing to note.  When you multiply two quantities, the resulting units of 

measure have a different dimensionality from the originals – so 1 meter times 1 meter has a 

different dimension from 1 meter.  We can start with a few types of physical quantities (types of 

dimensionality) and produce 100s of types of physical quantities, simply by multiplying or 

dividing by other types.  It is therefore possible to produce 100s (maybe millions – though the 

pragmatic use of them would be questionable) of derived types of physical quantities by such 

means.  Physicist who work with a large set of types of physical quantities distinguish between 

those that are derived (such as area) and those that are fundamental (such as distance). 
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Dimensional analysis is a process taught to physics students by which any equation can be 

validated as dimensionally valid or invalid.   

 The dimensionality of any terms added together must be the same.   

 The dimensionality of the two sides of an equation must be the same.   

 

To complete a dimensional analysis, 

dimensionality of any term in the 

formula must be convertible to an 

expression in terms of fundamental 

physical quantities such as distance, 

mass and time. 

 

There is some controversy amongst 

physicists about the number of 

fundamental physical quantities 

available to science.  Most physics text 

books have long lists of “fundamental 

physical quantities” with associated 

agreed-upon units of measure (similar 

to those seen in the Ref J article). 

 

Under the schema given in Figure 01 

we have an answer to the question of the dimensionality of entropy.  When Clausius first 

discovered the strange behaviour of the ratio Q/T (quantity of heat divided by temperature), the 

obvious dimensionality for such a quantity was Joules per Kelvin.  This translates into a 

dimensionality formula of M
1
L

2
T

-2
K

-1
. 

 

But a small number of people argue that these list of physical quantities can and should all be 

reduced to a list of only three fundamental physical quantities.  The Ref K document can be 

downloaded from the Ref L URL.  It comes from the physics department of the University of 

Florida, and I presume was prepared by someone who falls into this renegade group of extreme 

reductionists.  The three fundamental types of dimensionality are mass (represented by M), 

distance (represented by L), and time (represented by T) – all others being derivative. 

 

This was a controversy of sorts that existed in the late 1960s when I studied physics, and it 

appears to be unresolved today.   

 

Some numbers are dimensionless.  For example, the number  is dimensionless.  Consider the 

formula for the area of a circle. 

 𝐴 =  𝑟2     or      = 𝐴 𝑟2⁄  [4] 

 

Under dimensional analysis this becomes L
2
 =  L

2
 or  = L

2
 / L

2
.  In the rules of dimensional 

analysis, the common dimensions cancel out of the ratio, and the dimensionality of  is 1, 

usually referred to as “dimensionless”.  A dimensionless number cannot be added to or 

subtracted from a dimensional number, but when multiplying another dimensional number, does 

not change the dimensionality.  Dimensionless numbers seem to have two different sources.  

Figure 01 - Excerpt from Ref J 
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Some, like , are ratios, in which the dimensions of the numerator and denominator cancel.  The 

other source is more subtle – they are simply counts of things that are discrete and not 

measurable as physical quantities.  Like 6 cycles, or 6 dimensions, or 6 atoms.  Purists might 

argue that “amount of substance” measured in moles would fall into this category, being 

considered dimensionless because it is a count.  They might question this list of fundamental 

physical quantities. 

 

Personally, I can see value in both sides of that argument.  It is very similar to the controversy in 

computer science over casting of numbers.  I can “cast” a number 6 as a long integer, as a 

floating point number, as a short integer, etc.  Each cast determines the way the number is stored 

within assigned bytes in computer memory, and determines how the bits are interpreted when 

retrieved.  Some computer languages have very rigid casting rules determined entirely by the 

hardware implementation of types of numbers.  Other languages allow user-specified casts.  So I 

could create a cast called “moles”, and then any number of moles can only be added to another 

number of moles.  This is called strong type casting.  It prevents me (the programmer) from 

accidentally adding two numbers that should not be added.  Just so, the approach implied by the 

list of fundamental physical quantities in Figure 01is similar to strong type casting.  But, it hides 

creates barriers that hide the truth I seek.  I get more into that argument below. 

 

I would like to argue that all formulae involving entropy present entropy as a dimensionless 

physical quantity. 

4.3 - Dimensionality and ex or ln(x) – In General 

In my experience, all scientific expressions in which there is an exponent or a logarithm are such 

that the argument of exponentiation or of the logarithm is dimensionless.   

4.3.1 - Universal Law of Gravitation 

An obvious example would be the universal law of gravitation: 

 𝐹 = 𝐺
𝑚1𝑚2

𝑟2  [5] 

The exponent 2 on r is a count of dimensions in space-time, and has no other physical 

dimensionality in terms of units of measure.  I.e. in r
2
, 2 is a “dimensionless number”.  I note in 

this example that the concept of  “dimension” has two closely-related meanings, and I must be 

careful not to confuse them.  I try to distinguish them by using “dimension” versus 

“dimensionality”. 

 Dimensions represented in a number – Space-time has four dimensions (3 of space and 1 

of time).  “r
2
” has two space dimensions. “r

3
” has three dimensions in space.  This is the 

common everyday meaning when used in expressions like “3-dimensional movie”. 

 Dimensionality of a number – On the other hand the physical quantity associated with any 

number is referred to as the dimensionality of the number.  Any number representing r
2
 will 

have dimensionality consisting of some unit of measure of space (e.g. meter, or cm) squared 

– meters
2
 or cm

2
 or something like that.  When talking about area, these two concepts 

coincide, but when talking about something like velocity, they do not.  

 

For example: 

 Area is calculated as A = r
2
. 

 It has units of measure m
2
 or cm

2
, and so represents two dimensional space.  
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 It has two dimensions of distance, and therefore has dimensionality L
2
. 

 Velocity is calculated as V = d/t. 

 It has units of measure of kilometers per hour, or centimeters per second. 

 It has dimensionality of L/T, or more often written as L
1
T

-1
. 

 Acceleration has dimensionality of L/T
2
, more often written as L

1
T

-2
. 

 

The distinction is, perhaps, subtle when talking about distance measures, but less so in other 

circumstances.  For example, the frequency of a tuning fork is expressed in cycles per second – 

i.e. (a count of cycles)/(a unit of measure of time).  All counts are without dimensionality. So 

frequency has dimensionality of T
-1

.  Equation [5] clearly mixes distance (L) and mass (M), but 

the inclusion of time is not evident. 

 

But, back to my point, the exponent 2 on r
2
 is a count, and so is dimensionless, not being a 

measure of mass, time or distance. 

4.3.2 - Arrhenius’ Equation 

A more instructive example would be Arrhenius’ Equation.  According to the Ref G article, 

Arrhenius' equation gives the dependence of the rate constant of a chemical reaction on the 

absolute temperature, a pre-exponential factor and other constants of the reaction. 

 

 𝑘 = 𝐴 × 𝑒(𝐸𝑎 𝑅𝑇⁄ ) [6] 

Where: 

 k is the rate constant, 

 A is the pre-exponential factor, a scaling constant for each chemical reaction (according to 

collision theory, A is the frequency of collisions in the correct orientation), 

 Ea is the activation energy for the reaction (in the same units as R*T), 

 R is the universal gas constant, and 

 T is the absolute temperature (in kelvins). 

 

The expression Ea/RT has dimensionality energy / energy, and is therefore a dimensionless 

number.  It seems to always be the case that all exponents in scientific formulae are 

dimensionless ratios.  This makes some sense.  We all know what the dimensionality of energy is 

(M
1
L

2
T

-2
).  But what is the dimensionality of e

energy
? 

4.3.3 - Tsiolkovsky rocket equation 

Similarly, in my experience, all scientific expressions in which there is a logarithm are such that 

the argument of the logarithm is dimensionless.   

 

As an example, the Tsiolkovsky rocket equation, or ideal rocket equation, describes the motion 

of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to 

itself using thrust by expelling part of its mass with high velocity and thereby move due to the 

conservation of momentum.  The equation relates the delta-v (the maximum change of velocity 

of the rocket if no other external forces act) with the effective exhaust velocity and the initial and 

final mass of a rocket, or other reaction engine. 

 

For any such maneuver (or journey involving a sequence of such maneuvers): 
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 ∆𝑣 = 𝑣𝑒 ln (
𝑚0

𝑚𝑓
) [7] 

Where: 

 v – the maximum change of velocity of the vehicle (with no external forces acting). 

 m0 is the initial total mass, including propellant. 

 mf is the final total mass without propellant, also known as dry mass. 

 ve is the effective exhaust velocity. 

 ln() is the natural logarithm function. 

 

The argument of the natural logarithm function is a dimensionless ratio. 

4.3.4 - Other Examples 

The Wikipedia articles at Refs H and I present the Fenske and Nernst equations.  In all cases the 

argument of the logarithm is dimensionless. 

 

 

                         Fenske Equation [8]                                                Nernst Equation [9] 

                 
 

Again this makes sense.  For example, we know the dimensionality of energy (M
1
L

2
T

-2
), but 

what is the dimensionality of ln(energy)? 

 

In my long experience, I cannot remember seeing an exponential function or logarithmic 

function for which the argument was other than dimensionless.  In this brief search on the 

internet, I have had the same result. 

 

At the same time, I do not remember ever hearing a discussion of this phenomenon.  Perhaps 

most people find it too obvious to remark upon. 

4.4 - Dimensionality of Entropy In Thermodynamics 

In the later study of thermodynamics, under Boltzmann, the equation for entropy became: 

 BS= kB ln(Ω) [10]   

 

The term ln(Ω) is dimensionless for two reasons.  First, and most obvious,  is a count of the 

number of microstates that are associated with one macrostate.  All counts are dimensionless, by 

definition.  But, in my application of the formula (see equation [14]) I replace Ω with the 

combinatorial multinomial coefficient Ω = 𝐴!/ ∏ 𝑎𝑖
𝑘
𝑖=1 .  Is this dimensionless?  One could argue 

that the dimension is (count)/(count
k
).  But, since counts are always dimensionless, this reduces 

to a dimensionless count. 

 

kB is the Boltzmann constant and has a measured value of 1.38064852 × 10
-23

 m
2
 kg s

-2
 K

-1
.  This 

is a VERY small number, and is used to scale the entropy to a size compatible with the 

conservation of energy regime when discussing atoms and molecules.  The units of measure for 
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kB is read as [meters squared kilograms per second squared, per degree Kelvin], or 
𝑚2𝑘𝑔

𝑠2𝐾
.  The 

units of energy can be pulled from Newton’s laws, as in Work = Force x Distance = Mass x 

Acceleration x Distance = kg x m/s
2
 x m =

𝑚2𝑘𝑔

𝑠2
.  So, it seems the units of measure of kB are 

energy per degree Kelvin.  Energy is definitely NOT a dimensionless quantity, and most physics 

text books consider degrees Kelvin to be a fundamental physical dimension in its own right, 

similar to mass, time and space.  (For example, see Ref K.)  If that is true, then the ratio 

(energy/temperature) would not be dimensionless, but would, rather, have a very complex 

dimensionality [M
1
L

2
T

-2
K

-1
]. 

 

However, with some research, I discovered two interesting things: 

 First, I note when consulting the Ref K document that temperature is not just passed over as a 

fundamental physical quantity, it is not even included in the short list of useful derived 

physical quantities.  But, since the first line of the document declares that ALL (in bold) units 

come from three fundamental physical quantities, I can presume that temperature was not left 

out of the list of fundamental physical quantities by accident.  So, then, the question that 

cannot be avoided is, what the dimensionality of temperature, expressed in terms of those 

fundamental or derived units found on the Ref K list?  

 Second, that absolute temperature and energy are related as follows.  By the “equipartition of 

energy” law, the energy in a thermodynamic system is automatically spread over (partitioned 

over) all possible modes of storage.  Each mode of storage is called a “degree of freedom” 

for the partition.  Temperature is generally proportional to the energy per degree of freedom.  

So, for a given quantity of energy, the temperature is reduced as you add degrees of freedom.   

 

But, this means that entropy with units of measure Joules/Kelvin is actually Joules / (Joule / 

degrees of freedom) which resolves to a count of degrees of freedom.  All counts are 

dimensionless numbers.  And voila!  The units of measure for thermodynamic entropy resolve to 

a dimensionless number. 

 

This is consistent with the equations for conservation of energy in which the term S x T is a form 

of energy.  [degrees of freedom] x [energy per degree of freedom] resolves to [energy], as 

required in the equation. 

4.5 - Dimensionality of Entropy In Information Theory 

The articles at Refs M, N and O are about units of measure in information theory.  Information 

theory was born about 1948 and has gone through a very rapid and tumultuous period of 

exploration and expansion, with, literally, thousands of papers being produced.  In my 

experience, I have found a few papers that were helpful, but many were too sophisticated for me 

to follow, and a great many were just simply confusing, or wrong.   

 

A turning point in my personal search for understanding of entropy came when I read the Ref Q 

book by Cohen and Stewart.  It pointed out the absurdity of many of the arguments based on 

concepts of randomness, and the distinction between order and disorder.   

 

Then I heard this story on a CBC program (citation lost) in which Boltzmann’s own views were 

revealed.  In those difficult days when he was developing the concept of entropy, there was great 
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controversy about the very existence of atoms, about the nature of which he had to make 

assumptions.  He had to defend his views against harsh public criticism.  When releasing his first 

serious description of entropy, he added a section on order and disorder.  In the vicious and very 

personal attacks he suffered from his opponents, a misrepresentation of this section was used as 

fodder for sarcasm, and became the focus of public debate.   After a while he re-issued a more 

carefully written document, leaving out the controversial section on order and disorder.  He died 

by his own hand, presumably depressed by the endless verbal assaults he had to endure in public 

debates.  The first incontrovertible evidence of the existence of atoms was produced only a year 

later (1906), and his theories were vindicated.  For over 100 years, all university texts presented 

entropy in terms of the arguments about order and disorder, since that is what the public 

controversy was about.  But, that was a straw man issue.  Boltzmann never meant his theory to 

be presented the way the public and academia had seen it to be.  It is only in recent years (post 

2000) that the confusion about order and disorder is being written out of university texts when 

discussing thermodynamic entropy.  Unfortunately, writings about information entropy tend to 

be rife with such confusing terminology. 

 

So, based on my reading of Cohen and Stewart, augmented by my understanding from the CBC 

documentary, I learned to ignore any papers or books that talked about randomness or disorder 

and to focus on those that showed mathematical developments using arguments I could follow.  

It turned out, that was a very small set of papers and books – especially when I read into 

information theory.  So, it is almost certain that there are profound insights to be had from 

information theory that were/are simply over my head.  I would be brash to say that ALL talk of 

order, disorder and randomness is wrong, but Cohen and Stewart very ably argue that MOST of 

that kind of argument is nonsense. 

 

Nevertheless, I think that a look at units of measure as used in information theory provides some 

perspective on the tumultuous development of this field of study, and some insights into my own 

calculations of entropy.   

 

In the Ref P spreadsheet (see Figure 02) I have collected together some notes about units of 

measure, as used for entropy by theorists of “information theory”.   It comes down to this.  Just 

as there are different units of 

measure for mass (grams, 

pounds, kilograms) used in 

different physical 

measurement systems (CGS, 

British, MKS, SI), there are 

three different systems for 

units of measure for entropy.  

And, there are conversion factors that let you convert from one system to the other.  However, 

different theorists have given these three units many different names, so each unit of measure has 

several different names:  

 Bit – a bit is the smallest unit of measure for entropy.  It is associated with a measurement 

system using log2().  A bit also goes by the name “a Shannon” with symbol Sh; 

 Nat – a nat has a more abstract definition, being associated with a measurement system based 

on natural logarithms, i.e. based on loge().  A nit is also known as a nit or a nepit.   

Figure 02 – Drawn from the Ref P spreadsheet. 
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 Dit – a dit is associated with a measurement system based on log10().  A dit is also known as 

a decit, a ban, or a Hart.   

 

The conversion factors for these three units of measure are shown in Figure 02, and in the Ref P 

spreadsheet.  These conversion factors seem to play the same role as Boltzmann’s constant (kB) 

plays in thermodynamics.  That is to say that they are scaling factors that enable measurements 

made in one measurement system to be convertible for use in another measurement system.  

Scaling factors are often dimensionless constants, similar to Boltzmann’s constant kB. 

 

However, exactly what they measure is difficult to determine.  The “bit” is used in two distinctly 

different measurement systems.  I believe that the nat and dit are only used in one.  The two 

systems for the “bit” unit are: 

 Information – First, the information technology industry, bits are counts of units of 

information as found in a computer memory bank or in a digital data transmission.  It seems 

that “bit” in this context is a dimensionless unit – a count of minimal quanta of information.  

All counts are considered dimensionless.  8 bits make a byte, and both storage capacity and 

transmission size is measured in bits or bytes.  Neither nats nor dits are used in such an 

information measurement system, to my knowledge. 

 Entropy – Second, in information theory, bits are measures of entropy of a transmission or 

stored message.  It is related to the “number of ways you can re-arrange the bits and deliver 

the same information”.  Then it would be closer in meaning to entropy in thermodynamics, or 

in my to-be-proposed ABM/histogram system.  In any case, regardless of the exact words 

used to describe what it measures, it seems pretty clear that a bit in this context is a 

dimensionless number.  Proponents of information theory seem to claim that this has the 

same meaning as in the first instance.  The difference, as I see it, is that in the first instance a 

person can actually count the bits in a chip to arrive at an integral value, but in the second 

instance it is calculated for some ephemeral bit-stream and a positive real number is returned. 

 

I think it is important for me to understand how the unit of measure “bits” functions in each of 

the two measurement systems in which it is used.  (See the table in Figure 03, also drawn from 

the Ref P spreadsheet.) 

4.5.1 - Entropy of a Bit-Stream – All Ones 

I am going to use this same table several times, so it requires some explanation: 

 The yellow cells are intended for varied input and contain the variables ai.  In this case there 

is a bit-stream of five bits, all of them turned on.  In later cases, there will be a stream of 

numbers.  The five yellow cells are the only cells into which I will be inserting new values as 

this exercise proceeds.  All others are computed automatically. 

 K=5 indicates the number of bins in the histogram.   

 The blue cell to the right of the yellow cells is the sum of the values of ai, i.e. the sum of the 

yellow cells.  In my notation ∑ 𝑎𝑖 = 𝐴.   

 The bases of the logarithm for the three systems of measurement are shown for bits, nats and 

dits at the bottom left.   

 The green area contains temporary calculations for four systems of measurement: bits, nats, 

dits and hnats (i.e. my own developing system for use with general histograms, and for use in 

ABMs).   
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 Finally, the orange area to the right is where the four values of entropy for this histogram 

(this bit stream) is calculated.  Note that each system of measurements produces a different 

value. 

 

 

In this version of the table, the bits are all on (i.e. = 1).  Note that the relative sizes of the values 

for entropy (when divided by the entropy S in bits) exactly matches the conversion factors as 

shown in Figure 02.  This tells me my table is set up in a valid fashion. 

 

The relevant equations for the four orange cells are: 

 S in bits: 𝑆 = ∑ [
𝑎𝑖

𝐴
× log2 (

𝐴

𝑎𝑖
)]5

𝑖=1  [11] 

 S in nats: 𝑆 = ∑ [
𝑎𝑖

𝐴
× 𝑙𝑛 (

𝐴

𝑎𝑖
)]5

𝑖=1  [12] 

 S in dits: 𝑆 = ∑ [
𝑎𝑖

𝐴
× log10 (

𝐴

𝑎𝑖
)]5

𝑖=1  [13] 

 S in hnats: 𝑆 = [ln[𝐴!] − ∑ [𝑎𝑖!]
5
𝑖=1 ]/𝐴   

                                                         using the custom function shown in Figure 04. [14] 

 

Figure 04 – Custom function used in calculation of hnats. 

 
 

The unit of measure “hnats” is one I am inventing here.  I do not want to call what I measure 

“nats” because (a) I am using a different formula from the one used for nats in information 

theory, and (b) I find it difficult to make a direct and clear link between what I am measuring 

Figure 03 – Single Bits as Input – Various Units as Output 
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(entropy of a histogram) and nats.  Nevertheless, there is a close connection between what I am 

measuring and “information entropy”, so I retain the “nats” designation, and prepend the ‘H’ to 

signify application to a histogram, and not a bit stream or message in the normal sense 

considered in information theory.  At some point I might decide the distinction is not-needed, but 

for now it reminds me that there are unresolved issues. 

 

Here are some observations from this table:   

 K is the number of bits in the bit stream as the word “bits” is used in information technology 

language.  In my schema, K is the number of bins in the histogram. 

 The number in blue (5) is the count of the turned-on bits.  This corresponds to the number of 

agents (A) in my system. 

 The top number in orange is the measure of the information entropy and is designated the 

number of “bits” of information entropy. 

 

I have read that “information entropy” is often interpreted as “information”.  So, we might say 

that this 5-bit hardware configuration contains only 2.32 bits of information.  That does not 

really make sense to me, and that is one reason I find information theory confusing.  But, I don’t 

think my failure to understand this particularly arcane aspect of information theory makes my 

ultimate conclusions below wrong.  

4.5.1 - Entropy of a Bit-Stream – Single One 

Figure 05 is the same table 

as shown in Figure 03, 

except I have changed the 

contents of the five yellow 

cells.  That is, I have 

changed the values of the 

ai.  In particular, I have put 

all of the value into a 

single bin, and made the 

others empty.  The results are the same whether I put a ‘1’ into the single non-empty bin, or 

1,000 or any other number.  All formulae produce S = 0.00000. 

 

I have tried a variety of sets of 0/1 bit values in the yellow cells.  Two bins must contain 1s in 

order for the entropy to rise above zero.  Obviously, the role of 0s and 1s is not symmetric.  A 

bit-stream of all 1s should have the same amount of information as a bit-stream of all 0s, in my 

way of thinking about it, but that is clearly not the case.   

4.6 - Entropy of a Histogram 

Now, I will try the same table, 

but with inputs other than 0s 

and 1s.  In other words, it will 

be the entropy of a 5-bin 

histogram. 

 

 

Figure 06 – Calculating Entropy of a Histogram – 

Four Formulae 

 

Figure 05 – Bit Stream with a Single 1 
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I note that the relative size of my formula for histogram entropy does not have a consistent size 

with respect to the bits, nats and dits.  For example, as I change the values in the yellow cells, the 

derived conversion factors (relative sizes at the right) are rock solid for three of the four 

measures, but the conversion factor for hnats varies.  There is no one constant conversion factor.  

This is NOT a surprise, due to the implicit use of Stirling’s approximation in three out of four of 

the formulae.  If the numbers in the yellow cells are close to zero, there is wide variation between 

the value of entropy calculated in nats and in hnats.  But, if the numbers are large, then the 

relative size of nats and hnats are almost the same.   

4.7 - In The Proposed Histogram/ABM system 

So, the purpose for this series of diary notes (NTFs) is to formulate a system for the 

measurement of the entropy of histograms that can be used in agent-based models (ABMs).  The 

key question for this NTF is proposing a unit of measure for such a measurement of entropy.  I 

hereby decide that the definition of hnats as described in the section 4.5 (especially at Equation 

[14]) will be my standard unit of measure for entropy in the histogram system of entropy 

measurement.   When dealing with very large numbers in the histogram, this converges to nats as 

used in information theory.  But for the numbers typically found in ABMs, an hnat is slightly 

different from an nat. 

 

The formula for calculating entropy can then be written as: 

 𝑆𝐻
 =

𝐶𝐻
 

𝐴
× ln (

𝐴!

∏ (𝑎𝑖!)𝑘
𝑖=1

) =
𝐶𝐻

 

𝐴
[ln(𝐴!) − ∑ (𝑎𝑖!)

𝑘
𝑖=1 ] [15] 

 

HS is entropy, and it is a dimensionless number.  The unit of measure (hnat) is also 

dimensionless.  And, associated with that arbitrary decision, I also assume that the scaling factor 

HC in equation [15] is also a dimensionless quantity.  This assumption seems to be consistent 

with all I have read about entropy, and has not lead to any logical anomalies so far. 

 

How would I interpret a calculated value of HS for some histogram?  I suppose I could say that it 

is a count (therefore dimensionless) of bit-like morsels of information, but that would imply that 

I understand what a bit, a nat, or a dit actually is, within the context of information theory.  And I 

Figure 07 – Comparison – Small numbers vs Big numbers 
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cannot really claim that.  I think the better understanding of what an hnat is comes from its 

application, as in the Ref D draft paper.  But when I consider the definition of an “entropic 

index” the units of measure cancel out, and it becomes a moot question. 

 

The study that I did previously on the connection between Boltzmann’s formula for entropy and 

Shannon’s formula (at Ref F) provides the connection between hnats, as defined here, and nats, 

as used in information theory and as produced using Shannon’s definition of entropy.  (See 

equations [21] and [22] of that NTF.) 

 

The equation for conversion from nats to hnats is dependent upon A and is: 

 𝑆ℎ𝑛𝑎𝑡𝑠 ≈  (1.0041 ∗ (𝐴 ∗ 𝑆𝑛𝑎𝑡𝑠) + 8.5) 𝐴⁄  [16] 

 

The equation for conversion from hnats to nats is: 

 𝑆𝑛𝑎𝑡𝑠 ≈  
𝐴×𝑆ℎ𝑛𝑎𝑡𝑠−8.5

𝐴∗1.0041
 [17] 

4.8 - Concern 

This does not look at tidy as I would like it to be.  This conversion from hnats to nats and back is 

dependent upon A. 

 

Perhaps that concern will go away when I address the issue of Smax and Sindex in my next note. 

 

 


