
FLWSwarm
Follow the Leader + Random Walk

Swarm Algorithm

A tool for numeric optimisation of bound-constraint
cost functions using agent-based simulation

User Guide

Version 1.5

Sergio A. Rojas, PhD.

Universidad Distrital Francisco José de Caldas

Bogotá, Colombia, May 2022

FLWSwarm Version 1.5 - User guide

Copyright © 2022 Sergio A. Rojas

This document is distributed under the CC BY-NC-ND license (Creative Commons
Attribution-Noncommercial-NoDerivatives 3.0). Any other unauthorised form of dis-
tribution, copying, duplication, reproduction, or sale (total or partial) of the content of
this document, both for personal and commercial use, will constitute an infringement
of copyright. This guide is an original work of its author, and therefore it is protected
by the laws that regulate copyright and intellectual property. The opinions and points
of view expressed in this document are personal to the author and do not compromise
the policies, intentions, strategies, or official position of any other organism, company,
organisation, service or person mentioned in it.

The author has made every effort to ensure that this guide is free from errors or omissions.
However, the author accepts no responsibility for offence, damage or loss caused to any
person acting or endorsing actions using the material contained in this document.

First Edition, May 2022
Bogotá, Colombia

Overview

FLWSwarm is a software tool designed to find approximate solutions to optimisation
problems whose decision variables take numeric values in the real domain. It is based
on an agent-based model that implements a swarm algorithm using mainly two search
operators: Follow the Leader and random Walk. The goal of the swarm is to discover
the best patch within a discretised landscape for a given optimisation problem, that is, to
find the optimal (minimum) value of the quantised cost function for said problem, in a
more efficient way than traversing the entire landscape (exhaustive search).

The approach of solving an optimisation problem with a swarm of artificial agents
undergoing an adaptation process is known as Swarm Intelligence algorithm. Instead
of using mathematical analysis of aggregated variables describing the phenomena, this
approach resorts to modelling the interaction of a group of individuals in a simulated
environment and trace the evolution of such variables as the simulation progresses. In
this way, FLWSwarm assumes that global information about the problem emerges as an
intrinsic property of the evolution of the algorithm, which can not be explained away by
isolated contributions of single agents. In addition, visual inspection of the emerging
patterns of agents self-organisation, in response to changes in the simulation parameters,
can give useful insights regarding the hidden particularities of the problem.

FLWSwarm v1.5 has been released under GNU General Public License (GPLv3); it is
available online at:

http://modelingcommons.org/browse/one_model/6978

iii

http://modelingcommons.org/browse/one_model/6978

Contents

Overview iii

1 Description of the tool 1
1.1 What is FLWSwarm? . 1
1.2 How it works . 2
1.3 How to use it . 3
1.4 Other distinctive features . 6
1.5 Try it yourself . 8
1.6 Extending the tool . 9

2 Installation and execution 11
2.1 Online version . 11
2.2 Desktop version . 12

3 Source code 15

4 Software license 23

v

Chapter 1

Description of the tool

1.1 What is FLWSwarm?
FLWSwarm is an agent-based model that implements a swarm search algorithm for
numerical optimisation of real-valued bound-constraint functions, based mainly on two
search operators: Follow the Leader and Random Walk (FLW). The goal of the swarm
is to discover the best patch within a discretised landscape for a given optimisation
problem, that is, to find the optimal (minimum) value of the discretised cost function for
said problem, in a more efficient way than traversing the entire landscape (exhaustive
search). The complete set of operations performed by the algorithm are:

• Follow the leader: there are groups of agents that follow a leader.
• Random walk: there are scout agents moving on their own.
• Single- or multi-leaders mode: there can be multiple leaders in the swarm.
• Leadership relay: leadership is constantly updated based on fitness.
• Clash safeguard: leader agents must stay away from each other to avoid collisions.
• Monitor premature convergence: when cohesion is too low, agents disperse.
• Enable elitism: an agent stays near the best patch discovered so far.

Figure 1.1: FLWSwarm is a tool to search for the highest (lowest) peak of a simulated
landscape generated from the cost function of an optimisation problem.

1

1.2 How it works

Figure 1.2: FLWSwarm user interface.

The optimisation problem defined by the LANDSCAPE chooser (from SPHERE,
RASTRIGIN, ROSENBROCK, HIMMELBLAU, EGGHOLDER, or RANDOM), is
discretised and projected onto the 2D grid of cells (patches) that make up the view area
of the simulation. Therefore, the swarm of agents aims to discover the optimal patch in
said projected landscape, that is, the coordinates where the cost function is the lowest.

Each agent is characterised by a location (x,y) in the landscape and the value of
the cost function evaluated at that patch, which also indicates its fitness as a candidate
solution for the chosen problem. Now each agent can have one of three possible roles
(or breeds): LEADER (an agent located in a promising patch), FOLLOWER (an agent
following a leader), or WALKER (a scout agent).

In the simulation, LEADERS are shown as a “bird” shape (reminiscent of earlier
models of swarm intelligence inspired by the behaviour of flocks of birds) and a different
color, while FOLLOWERS are shown as a triangle and the color of his LEADER.
WALKERs, in turn, are shown as a gray “triangle” shape. As a final solution to the
problem, the algorithm maintains a FLW-BEST-PATCH ever discovered during the
simulation run. Similarly, the TOP-LEADER represents the best solution during a given
iteration.

LEADERs and WALKERs move randomly around their current positions, however
LEADERs move within a small range of distance (local exploitation) while WALKERS
move within a larger range (global exploration). When a WALKER accidentally dis-
covers a more promising patch than those of the current leaders, the TOP-LEADER is
asked to move to that patch.

2

Furthermore, every LEADER has an (equally larger) group of FOLLOWERs. FOL-
LOWERs move in pursuit of their leaders: they face their corresponding leader and
jump in that direction with a random step length. When a FOLLOWER accidentally
discovers a more promising patch, he switches roles to become the LEADER of their
group (in practice, since all agents are homogeneous, they simply trade places).

In each iteration of the algorithm, all the agents of the swarm traverse the landscape
moving according to their roles. Additionally, three operators were introduced to
improve search efficacy:

• Monitor premature convergence: When the average cohesion of groups within the
swarm falls below a certain level, agents disperse by performing a warm restart to
random locations.

• Clash safeguard: Prevents two leaders with their groups from colliding in the
same landscape region.

• Elitism: Recalls the best discovered patch (the best solution found so far) by
moving a WALKER to that position.

The simulation ends after a maximum number of steps (MAX-TICKS) is reached,
or when the GROUND-TRUTH-SOLUTION is discovered first.

1.3 How to use it

Firstly, from the control panel shown above, choose an optimisation problem to solve
from the LANDSCAPE drop-down list and select the corresponding XY-BOUNDS
(recommended values are [-6, 6] for SPHERE, RASTRIGIN, ROSENBROCK, and
HIMMELBLAU, and [-512, 512] for EGGHOLDER and RANDOM). The GRID-SIZE
chooser allows defining the sampling resolution of the 2D grid of patches where the cost
function will be evaluated (the larger this size, the harder it is to discover the best patch).

Then choose the number of agents to simulate with the SWARM-SIZE slider, the
percentage of walkers in the swarm with the WALKERS-RATE slider, and the number
of N-LEADERS within the swarm. Also, choose the termination condition with the
MAX-TICKS slider and use the ELITISM? and COHESION? switches to enable or
disable the corresponding operators. A typical configuration of these parameters would
be (to simulate a population of 20 agents, including 4 leaders with 3 followers each, plus
4 walkers):

3

• SWARM-SIZE: 20
• N-LEADERS: 4
• WALKERS-RATE: 0.2
• ELITISM?: On
• COHESION?: On
• MAX-TICKS: 1000
Now you can run the simulation using the buttons in the control panel (shown below):

• SETUP: Computes the problem LANDSCAPE and displays it in the view grid as
a 2D discretised surface plot. In addition, it creates the swarm, scatters the agents
randomly within the boundaries of the landscape, and initialises the algorithm
global variables (depending on the GRID-SIZE this setup may take a while).

• RESET: Relocates the agents randomly in the 2D view and initialises the algo-
rithm’s global variables (this is much faster than SETUP, as it doesn’t recalculate
the problem landscape, which might be useful for multiple simulation runs).

• GO: Iteratively execute the main procedure of the algorithm until finding the
optimum or reaching the MAX-TICKS.

• STEP: Execute an iteration (a single tick) of the main procedure of the algorithm.
• SPOTLIGHT: A useful chooser to keep track of the optimal solution, the best

solution found so far, or the current top leader within the display area.
• Also remember that the SPEED slider at the top of the window can be used to

control how fast the simulation runs in the view grid.
Once you start running the simulation, the swarm behaviour will emerge in the view

grid (see below), as the agents try to discover the promising regions within the landscape
and hopefully find the optimal patch before MAX-TICKS.

4

Besides, the output monitors (shown below) allow you to inspect such emerging
behaviour as the model evolves:

• GROUND-TRUTH-SOLUTION: Coordinates and cost function value of the
optimum.

• BEST-SOLUTION-FOUND: Coordinates and cost function value of the FLW-
BEST-PATCH discovered so far.

• CURRENT-TOP-LEADER: Coordinates and cost function value of the leader at
the best patch in the current iteration.

• TOP-LEADER-FITNESS: Historical plot of the leader with best fitness (value of
cost function) throughout the simulation.

• BEST-SOLUTION-FITNESS: Historical plot of best solutions discovered through-
out the simulation.

• AVERAGE-GROUP-COHESION: Historical plot of the average cohesion mea-
surement throughout the simulation (only if COHESION? is enabled).

5

• RUNTIME: Total execution time of the simulation run.
• OPTIMUM-TICK: The tick number where the optimum was discovered (if it

happens). Notice that if the algorithm is able to do so, these last two monitors will
display a “!!!” sign in their text box.

• AVG-COHESION: The average measure of cohesion of the groups within the
swarm (only if COHESION? is activated).

1.4 Other distinctive features

Each LANDSCAPE may exhibit different properties: multimodality, convexity, sepa-
rability, multiple global or local minima, plateaus, ridges, valleys, etc. The advantage
of swarm optimisation methods is their ability to explore several regions of the search
space simultaneously so they can discover these properties without getting stuck in
local minima, as opposed to single point metaheuristics. However, it is also known that
these swarm-based methods may suffer from premature convergence where the entire
population collapses to a single suboptimal patch or small region. For reference, each
landscape exhibits the following properties (the actual mathematical expressions and 2D
landscapes can be seen in the figure next page):

• SPHERE, SPHERE-OFFSET: unimodal, convex.
• RASTRIGIN: multimodal, multiple local minima, ridges.
• ROSENBROCK: multiple local minima, valleys.
• HIMMELBLAU: multimodal, multiple global minima, valleys.
• EGGHOLDER: multimodal, multiple local minima, valleys.
• RANDOM: multimodal, multiple local minima, sampled from a scaled normal

distribution.

The FLW algorithm attempts to circumvent such swarm-based drawbacks by using
two features. First, it allows for multiple leaders, meaning you can choose between
having a single swarm of agents with an unique leader, or having multiple leaders with
different subgroups of followers (distinguished by different colors). When choosing the
multi-leader mode, you can notice how the subgroups spread out looking for minima
in separate regions of the LANDSCAPE, which is partly due to the anti-clash mecha-
nism that the algorithm implements to avoid collisions between leaders. You can test
this emergent behaviour (leaders dominating separate regions of the search space) by
experimenting with different values for the N-LEADERS and SWARM-SIZE sliders.

6

SPHERE

Separable, Unimodal
RASTRIGIN

Separable, Multimodal, Local minima

f (x) = x2
1 + x2

2 f (x)=20+∑
2
i=1(x

2
i −10cos(2πxi))

−6 < x1,x2 < 6
x⋆ = (0,0); f (x⋆) = 0

−6 < x1,x2 < 6
x⋆ = (0,0), f (x⋆) = 0

ROSENBROCK

Non-Separable, Unimodal, Valley
HIMMELBLAU

Non-Sep., Multimod., Non-local min.

f (x) = 100(x2−x2
1)

2+(1−x1)
2 f (x)=(x2

1+x2−11)2+(x1+x2
2−7)2

−6 < x1,x2 < 6
x⋆ = (1,1)
f (x⋆) = 0

−6 < x1,x2 < 6

x⋆ =
{

(3,2),(2.81,3.28)
(3.78,3.28),(3.58,1.85)

f (x⋆) = 0

EGGHOLDER

Non-Separable, Multimodal, Local min.
RANDOM (example)

Separable, Multimodal, Local min.

f (x)=−x1 sin
(√

|x1−(x2+47)|
)

−(x2+47)sin
(√

|0.5x1+(x2+47)|
) f (x)∼ N ((0,0),500)

−512 < x1,x2 < 512
x⋆=(512,404.23), f (x⋆)=−959.64

−6 < x1,x2 < 6
x⋆: not preset (generated on-the-fly)

7

The second feature is intended to prevent premature convergence by dispersing
agents by means of a warm restart of agent locations every time AVG-COHESION
drops below a certain threshold (if COHESION? is enabled), or periodically once a
predetermined number of ticks is reached (if COHESION? is disabled) during the
execution of the GO loop. Since relocated leaders can start exploring newer unknown
regions, an ELITISM-like learning mechanism allows the swarm to keep track of
the most promising solution found so far in previous restarts by moving an arbitrary
WALKER to the BEST-SOLUTION-FOUND patch; this way, eventually a leader would
be attracted to that patch if no better solutions are found in the new restart.

You can test the above behaviour by experimenting with the COHESION? and
ELITISM? switches, whose effect is depicted in the view area and in the periodic
saw-like patterns that appear in AVERAGE-GROUP-COHESION and TOP-LEADER-
FITNESS plots. Use the SPEED slider at the top to slow down the display of the warm
restart mechanism. You can use the SPOTLIGHT chooser to highlight in the view
area the location of the LANDSCAPE’s GROUND-TRUTH-SOLUTION or the current
BEST-SOLUTION-FOUND patch or the current TOP-LEADER.

1.5 Try it yourself
The following are interesting simulation scenarios:

• Solve each LANDSCAPE with a single-leader swarm. Repeat the experiment
many times (use the SETUP button once, then RESET and GO as many times
as you like). What is the success rate for each problem? (i.e. what percentage
of the total number of repetitions was the FLW algorithm able to discover the
ground-truth optimum?)

• Is the multi-leader strategy better than the single-leader strategy? Which one
achieves a higher success rate? Do you get better results as the number of leaders
increases? You can test the last hypothesis by trying different combinations of
pair values (N-LEADERS, SWARM-SIZE): (1, 5), (2, 10), (4, 20), (8, 40).

• Try to solve each LANDSCAPE with different resolutions (GRID-SIZE): 100x100,
200x200, 400x400, 800x800. This parameter affects the sampling rate of the
problem cost function during quantisation and thus changes the size of the search
space (the larger this size, the more difficult the search for the best patch). How
does this affect the success rate of the algorithm? How does this affect the speed
of convergence (that is, the average tick where the optimum is discovered)?

• Notice that unlike the other problems, the RANDOM problem produces a different
landscape each time you press SETUP. It would be interesting to investigate if
nonetheless the FLW algorithm is able to solve it or if some instances present
more difficulty than others.

As a side note, we remark that the resolution level can induce quantisation errors
during the cost function sampling, therefore the optimum patch coordinates of a given
LANDSCAPE can differ depending on the GRID-SIZE. For example, the optimum of
ROSENBROCK’S problem for 100x100 and 200x200 resolutions is at f(1.2, 1.44) =
0.04, but for 400x400 resolution it is at f(0.93, 0.87) = 0.007501, whereas for 800x800
resolution it is at f(1, 1) = 0.00255.

8

Another interesting idea to experiment with is to assess the performance of the
model under different swarm configurations, in terms of efficiency. Since the worst
case for a single-agent algorithm would be to perform an exhaustive search of the entire
LANDSCAPE, i.e., evaluate the cost function on the entire grid of NxN patches (where
N depends on the GRID-SIZE), the efficiency of each algorithm configuration can
be measured as the percentage of evaluations of the cost function needed to find the
optimum, with respect to NxN, in other words, the average rate OPTIMUM-TICK /
NxN. The following swarm configurations can be tested:

• Simultaneous Global Random Search: A swarm of WALKERs (SWARM-SIZE: 5,
N-LEADERS: 1, WALKERS-RATE: 0.8, COHESION?: OFF, ELITISM?: OFF)

• Simultaneous Local Random Search: A swarm of singleton LEADERs (SWARM-
SIZE: 5, N-LEADERS: 5, WALKERS-RATE: 0.2, COHESION?: OFF, ELITISM?:
OFF)

• Single-leader Swarm Search: A swarm of agents with an unique LEADER,
FOLLOWERs and WALKERs (SWARM-SIZE: 5, N-LEADERS: 1, WALKERS-
RATE: 0.2, COHESION?: OFF, ELITISM?: OFF).

• Multi-leader Swarm Search: A swarm of agents with multiple LEADERs, FOL-
LOWERs and WALKERs (SWARM-SIZE: 20, N-LEADERS: 4, WALKERS-
RATE: 0.2, COHESION?: OFF, ELITISM?: OFF)

• FLW full swarm search: A swarm of agents with multiple LEADERs, FOLLOW-
ERs and WALKERs, plus cohesion tracking and elitism (SWARM-SIZE: 20,
N-LEADERS: 4, WALKER-RATE: 0.2, COHESION?: ON, ELITISM?: ON)

Can you identify which configuration (hence which search strategy/operators) im-
proves the optimisation effectiveness/efficiency of the FLW algorithm? Is there a
minimum follower base size for the multi-leader setup to work properly?

1.6 Extending the tool
Some possible paths for tool extensions are:

• Expand the landscape repertoire with additional problem cost functions.
• Extend the model to solve problems in higher dimensions (not necessarily using a

2D grid view).
• Extend the model to discrete (binary) problem domains.
• Extend the model to solve non-stationary problems, that is, problems where the

landscape can vary with time during the course of a run. In this sense, we believe
that the mechanisms to prevent premature convergence implemented in the FLW
algorithm can be useful to also adapt to this type of dynamic changes in the
landscape.

9

10

Chapter 2

Installation and execution

2.1 Online version
The easiest way of experimenting with FLWSwarm is by using its online version. The
software is available at the ModellingCommons website. So, you just need to follow
these steps:

1. Open your favourite Internet browser and point it to the following URL:
http://modelingcommons.org/browse/one_model/6978

2. The following web page should appear:

3. From the toolbar, choose the “Run in Netlogo Web” tab:

11

http://modelingcommons.org/browse/one_model/6978

4. A grey area in the middle of the screen is shown. Do “Click to Run Model”:

5. The model main screen will show up:

6. That’s all! Choose the running parameters in the control panel, click SETUP and
then GO! You will see how the swarm of agents adapt to the LANDSCAPE of
the problem in the simulation view area, while the performance indicators will be
shown in the monitors and the plots.

2.2 Desktop version
The desktop version is recommended if you want to try heavy experimentation, such as
parameter tuning, average behaviour of multiple runs or simulations with large resolution
for the view area. For this purpose, FLWSwarm runs over the NetLogo desktop simulation
platform. In this case, you need to go through the following steps:

12

1. Download and install the NetLogo desktop software. For this purpose, go to
http://ccl.northwestern.edu/netlogo/, click in “Download NetLogo”
and follow the installation instructions:

2. Download the FLWSwarm model file from the model webpage, using the “Export”
button:

A file called Follow the Leader Random Walk (FLW) Swarm Algorithm.nlogo
would be downloaded to your local drive.

3. Run NetLogo on your computer. Choose the menu option File → Open:

Locate the Follow the Leader Random Walk (FLW) Swarm Algorithm.nlogo file
that you downloaded previously and open it.

13

http://ccl.northwestern.edu/netlogo/

4. The FLWSwarm desktop screen will show up:

That’s it! Choose the running parameters in the control panel, click SETUP and
then GO! You will see the swarm of agents adapting to the LANDSCAPE of the
problem in the simulation view area, while the performance indicators will be
shown in the monitors and the plots.

14

Chapter 3

Source code

;; ------------------------------
;; A multi-leader swarm model for bound-constrained numerical

optimization
;; based on follow-the-leader and random walk (FLW) operators.
;;
;; This agent-based model aims to find the patch with the global

minimum cost
;; value within the search space (landscape) of the chosen

problem.
;;
;; A model by Sergio Rojas-Galeano
;; v1.5, April 2022 Copyright (c) The author
;; Correspondance email: srojas@udistrital.edu.co
;; Universidad Distrital Francisco Jose de Caldas, Bogota,

Colombia
;;
;; This program is free software: you can redistribute it and/or

modify
;; it under the terms of the GNU General Public License (GPLv3)
;; (see license at: https://www.gnu.org/licenses/gpl-3.0.txt)
;;
;; The model is made publicly available in the hope that it will

be useful
;; to modelers, but WITHOUT ANY WARRANTY whatsoever (see license

for details).
;; ------------------------------

globals [
;; FLW algorithm globals
top-leader ; best agent in current iteration
top-leader-fitness ; fitness value of current top leader
flw-best-patch ; best solution (patch) discovered by FLW
flw-runtime ; runtime (ms) until optimum discovery or

max. ticks
flw-optimum-tick ; tick where optimum was discovered (if

found)
avg-cohesion ; average cohesion of followers to their

leaders

;; Problem globals

15

true-best-patch ; ground truth optimum patch for a given
landscape

agent-size ; agent size depending on lanscape’s grid
size

]

patches-own [
x ; simulated pxcor, depending on bound

constraints
y ; simulated pycor, depending on bound

constraints
value ; value of cost function at these simulated

coordinates
]

turtles-own [
my-leader ; leader that this agent is following

]

;; FLW breeds
breed [leaders leader]
breed [followers follower]
breed [walkers walker]

;; Initialise problem landscape and swarm of agents
to setup

;; compute problem landscape (cost function) and set initial
best patch randomly

setup-search-landscape
set flw-best-patch one-of patches
reset-ticks

;; create walker agents
create-walkers swarm-size * walkers-rate [

set color gray set size agent-size ;
assing walker color & size

move-to one-of patches ;
assign initial random location

]

;; create leader agents and their followers
let colors shuffle [15 25 65 75 95 115 125 135] ;

colors to distinguish leaders
create-leaders n-leaders [

set color first colors set colors remove color colors ;
assing random color

set shape "bird" set size agent-size ;
assign shape and size

set my-leader self
move-to one-of patches ;

assign initial random location

;; create an equal number of followers for this leader and
spread them around

16

hatch-followers (swarm-size - count walkers - n-leaders) /
n-leaders [

rt random-normal 0 360 fd random world-width
]

]

;; initialise FLW globals
update-best

end

;; Execute one iteration of FLW algorithm
to go
reset-timer

;; apply search operators
do-elitism
follow-leaders
random-walks
track-clashes
track-cohesion
track-leadership

;; update FLW globals
update-best
update-runtime
show-spotlight
tick

;; termination condition: max ticks, or optimum discovered
if (ticks > max-ticks) or ((flw-optimum-tick > 0)) [stop]

end

;; Explotiation operator: follow-the-leader
to follow-leaders
ask leaders [rt random-normal 0 30 fd random-float 1]
ask followers [follow-move]

end

;; Move a follower towards its leader
to follow-move
face my-leader fd (distance my-leader) * (random-float 2) ;

move towards leader...
rt random-normal 0 60 fd random-float 2 ; ... with a small

local perturbation
end

;; Exploration operator: random walks
to random-walks
ask walkers [

walk-move
if value < top-leader-fitness [; if walker is better,

drag top-leader
ask top-leader [move-to myself]

]
]

17

end

;; Move a walker around
to walk-move
rt random-normal 0 30 jump (random-float 20)

end

;; Move walker to best solution so far
to do-elitism
ask walker 0 [

if elitism? [move-to flw-best-patch walk-move]
set shape ifelse-value elitism? ["star"]["default"]

]
end

;; Spread away clashing leaders and their followers
to track-clashes
ask leaders [

ask other leaders with [distance myself < (world-width - 1)
/ 25] [

move-to one-of patches
let me my-leader
ask followers with [my-leader = me] [follow-move]

]
]

end

;; Verify early convergence to local minima (low cohesion)
to track-cohesion
if cohesion? [

;; compute average cohesion measure
let total 0
ask leaders [

set total total + sum [distance myself] of followers with [
my-leader = myself]

]
set avg-cohesion total / swarm-size

]

;; spread out if early convergence to local minima
if (cohesion? and avg-cohesion < .75) or (not cohesion? and

ticks mod 30 = 0)[
ask turtles [rt 360 fd random 200] ; radial dispersion

]
end

;; Allow best followers to claim leadership
to track-leadership
ask leaders [

;; swap places with best follower (including itself)
let my-old-patch patch-here
let my-best-follower min-one-of turtles with [my-leader =

myself] [value]
move-to my-best-follower
ask my-best-follower [move-to my-old-patch]

]

18

end

;; Update best solution discovered so far
to update-best
;; best solution so far would be top-leader
ask min-one-of leaders [value] [

set top-leader self
set top-leader-fitness value
if top-leader-fitness < [value] of flw-best-patch [

set flw-best-patch patch-here

;; check if optimum found (termination condition)
if flw-best-patch = true-best-patch [set

flw-optimum-tick ticks]
]

]
end

;; Update current algorithm runtime
to update-runtime
set flw-runtime flw-runtime + timer

end

;; Reset simulation (without setting up world and landscape from
scratch)

to reset
ask turtles [move-to one-of patches]
set flw-best-patch one-of patches
set top-leader one-of leaders
set flw-optimum-tick 0
set flw-runtime 0
set avg-cohesion 0
update-best
show-spotlight
clear-all-plots
reset-ticks

end

;; Create the fitness landscape depending on optimisation problem
to setup-search-landscape
clear-all

;; set view (world) size and cell (patch) size
(ifelse

grid-size = "100x100" [resize-world -50 50 -50 50 set
agent-size 4]

grid-size = "200x200" [resize-world -100 100 -100 100 set
agent-size 8]

grid-size = "400x400" [resize-world -200 200 -200 200 set
agent-size 16]

grid-size = "800x800" [resize-world -400 400 -400 400 set
agent-size 18]

)
set-patch-size ifelse-value grid-size = "800x800" [1] [400

/ (world-width - 1)]

19

;; make a landscape with hills and valleys according to chosen
cost function

ask patches [
set x pxcor * (xy-bounds / max-pxcor)
set y pycor * (xy-bounds / max-pycor)

set value (ifelse-value
landscape = "Sphere" [

x ^ 2 + y ^ 2
]

landscape = "Sphere-offset" [
(x - 50 * (xy-bounds / max-pxcor)) ^ 2 + (y + 50 *

(xy-bounds / max-pxcor)) ^ 2
]
landscape = "Rastrigin" [; note that degrees, not radians,

are needed for cos function
20 + ((x ^ 2) - 10 * cos ((180 / pi) * (2 * pi) * x))

+ ((y ^ 2) - 10 * cos ((180 / pi) * (2 * pi) * y))
]

landscape = "Rosenbrock" [
100 * (y - (x ^ 2))^ 2 + (1 - x)^ 2

]
landscape = "Himmelblau" [

((x ^ 2) + y - 11) ^ 2 + (x + (y ^ 2) - 7)^ 2
]
landscape = "Eggholder" [; note that degrees, not radians,

are needed for sin function
((- x) * sin ((180 / pi) * sqrt (abs (x - (y + 47)))))

- (y + 47) * sin ((180 / pi) * sqrt (abs ((x / 2) +
(y + 47))))

]
[random-normal 0 500] ; the last case is a random

landscape
; [random-float 500] ; the last case is a random landscape

)
]

if landscape = "Random" [
ask min-n-of 4 patches [value] [ask patches in-radius 30 [

set value value - random-float 300]]
repeat 20 [diffuse value 1]

]

;; find the true best value
ask min-one-of patches [value][set true-best-patch self]

;; scale patches color within values limits
let min-val min [value] of patches
let max-val max [value] of patches

ask patches [set pcolor scale-color yellow value min-val
log abs max-val 1.05]

end

;; Turn on the spotlight on the chosen agent
to show-spotlight
ifelse spotlight = "Best patch found"

20

[watch flw-best-patch]
[ifelse spotlight = "Ground truth patch"

[watch true-best-patch]
[ifelse spotlight = "Top leader now"

[watch top-leader]
[reset-perspective]

]
]

end

21

22

Chapter 4

Software license

FLWSwarm version 1.5
Copyright © 2022 Sergio A. Rojas.

This program is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with this
program. If not, you can download it from:

https://www.gnu.org/licenses/gpl-3.0.en.html.

23

https://www.gnu.org/licenses/gpl-3.0.en.html

	Overview
	Description of the tool
	What is red FLWSwarm?
	How it works
	How to use it
	Other distinctive features
	Try it yourself
	Extending the tool

	Installation and execution
	Online version
	Desktop version

	Source code
	Software license

