Basic Income - Households
Model was written in NetLogo 6.0.4
•
Viewed 412 times
•
Downloaded 22 times
•
Run 0 times
Do you have questions or comments about this model? Ask them here! (You'll first need to log in.)
Info tab cannot be displayed because of an encoding error
Comments and Questions
Please start the discussion about this model!
(You'll first need to log in.)
Click to Run Model
globals [ gini-index-reserve lorenz-points max-wealth min-wealth ;; I included this so I could check to see if there were any negative values max-income min-income monthly-bi max-indiv-cost-of-living total-adults ] patches-own [ patch-income ;; the current amount of income on this patch monthly-income ;; patch income / 12 ] turtles-own [ wealth ;; the amount of money a turtle has after-tax ;; amount of income left after paying taxes min-indiv-cost-of-living ;; individual minimum cost of living based on minimum set on interface cost-of-living ;; cost of living calibrated for family composition num-adults ;; number of adults per household (set further down in code) num-children ;; number of children per household (set further down in code) ] ;; the different family types, for setting the number of adults and children - this model leaves out roommates and extended family breed [couples-no-children couple-no-children] breed [couples-1-child couple-1-child] breed [couples-2-children couple-2-children] breed [couples-3-children couple-3-children] breed [singles-no-children single-no-children] breed [singles-1-child single-1-child] breed [singles-2-children single-2-children] breed [singles-3-children single-3-children] ;;; ;;; SETUP AND HELPERS ;;; to setup clear-all ;; call other procedures to set up various parts of the world setup-patches setup-turtles update-lorenz-and-gini reset-ticks end ;; set up the initial amounts of income each patch has to setup-patches ask patches ;; set up patch income random amount depending on distribution chosen [ if income-distribution = "random" [ set patch-income random (mean-indiv-annual-income * 2) ] if income-distribution = "normal" [ set patch-income random-normal mean-indiv-annual-income (mean-indiv-annual-income / 2) ;; latter value is an estimate of the standard deviation based on what the curve looks like ] if income-distribution = "exponential" [ set patch-income random-exponential (mean-indiv-annual-income) ] ;; keep income ≥ 0 if patch-income < 0 [ set patch-income 0 ] ;; set colour so richer patches have darker colour (in quintiles) set max-income max [ patch-income ] of patches ;; find highest income if patch-income < max-income * 1 / 5 [ set pcolor 58 ] ;; colour patches based on income levels if patch-income >= max-income * 1 / 5 and patch-income < max-income * 2 / 5 [ set pcolor 57 ] if patch-income >= max-income * 2 / 5 and patch-income < max-income * 3 / 5 [ set pcolor 56 ] if patch-income >= max-income * 3 / 5 and patch-income < max-income * 4 / 5 [ set pcolor 55 ] if patch-income >= max-income * 4 / 5 [ set pcolor 54 ] ] end ;; set up the initial values for the turtle variables to setup-turtles set-default-shape turtles "house" ;; determine composition of the different households based on demographics ( * .25 etc) entered here create-couples-no-children num-households * .25 ask couples-no-children [ set num-adults 2 set num-children 0 ] create-couples-1-child num-households * .10 ask couples-1-child [ set num-adults 2 set num-children 1 ] create-couples-2-children num-households * .11 ask couples-2-children [ set num-adults 2 set num-children 2 ] create-couples-3-children num-households * .05 ask couples-3-children [ set num-adults 2 set num-children 3 ] create-singles-no-children num-households * .39 ask singles-no-children [ set num-adults 1 set num-children 0 ] create-singles-1-child num-households * .06 ask singles-1-child [ set num-adults 1 set num-children 1 ] create-singles-2-children num-households * .03 ask singles-2-children [ set num-adults 1 set num-children 2 ] create-singles-3-children num-households * .01 ask singles-3-children [ set num-adults 1 set num-children 3 ] ask turtles [ move-to one-of patches with [not any? turtles-here] ;; if cost of living is to vary randomly do that here, otherwise set it at the minimum cost of living ifelse allow-varied-indiv-min-cost-of-living [ set min-indiv-cost-of-living random-normal min-monthly-cost-of-living-per-adult (min-monthly-cost-of-living-per-adult / 6) set max-indiv-cost-of-living max [min-indiv-cost-of-living] of turtles ] [ set min-indiv-cost-of-living min-monthly-cost-of-living-per-adult ] ;; adjust cost of living for family composition if num-adults = 1 [ set cost-of-living min-indiv-cost-of-living * ( 1 + ( num-children * top-up-children / 100 )) ] if num-adults = 2 [ set cost-of-living min-indiv-cost-of-living * ( 1.67 + ( num-children * top-up-children / 100 )) ] ;; determine wealth of individuals if inheritance-distribution = "random" ;; wealth [ set wealth random (mean-indiv-inheritance * 2) ] if inheritance-distribution = "normal" [ set wealth random-normal mean-indiv-inheritance (mean-indiv-inheritance / 4) ;; latter value is an estimate of the standard deviation ] if inheritance-distribution = "exponential" [ set wealth random-exponential (mean-indiv-inheritance) ] if wealth <= 0 [ set wealth 1 ] ;; if there are two adults in a household, double the wealth if num-adults = 2 [ set wealth wealth * 2 ] ;; colour turtles according to their relative wealth (this is reset at every step) color-turtles ;; if there's an inheritance tax, tax wealth at the beginning during set up (if progressive, use quintiles to set tax rate) if inheritance-tax = "flat" [ set wealth wealth * ( 1 - max-tax-rate / 100 ) ] if inheritance-tax = "progressive" [ if color = 1 [ set wealth wealth * (1 - max-tax-rate / 100) ] if color = 2 [ set wealth wealth * (1 - 0.8 * max-tax-rate / 100) ] if color = 3 [ set wealth wealth * (1 - 0.6 * max-tax-rate / 100) ] if color = 4 [ set wealth wealth * (1 - 0.4 * max-tax-rate / 100) ] if color = 5 [ set wealth wealth * (1 - 0.2 * max-tax-rate / 100) ] ] ;; set the household monthly income at 1/12 of the patch income; double it for two-adult households set monthly-income patch-income / 12 if num-adults = 2 [ set monthly-income monthly-income * 2 ] face one-of neighbors4 ] end ;;; ;;; GO AND HELPERS ;;; to go ask turtles [ upgrade-income ;; move to neighbouring patch if it has more income update-wealth ;; add net income to wealth color-turtles ;; set colour according to wealth quintile ] update-lorenz-and-gini set min-income min [ patch-income ] of patches set min-wealth min [ wealth ] of turtles tick end to go-ten-years ask turtles [ upgrade-income ;; move to neighbouring patch if it has more income update-wealth ;; add net income to wealth color-turtles ;; set colour according to wealth quintile ] update-lorenz-and-gini tick if ticks = 120 [ reset-ticks stop ] end ;; determine the direction which is most profitable for each turtle in ;; the surrounding patches within one patch ;; the only way I could get this to work was to have them just check one direction per tick to upgrade-income ;; turtle procedure - move to a higher paying patch next door if you can let patch-income-ahead patch-income-at-angle 0 ;; if patch ahead has a higher income, go to it; and either way, rotate right 90° if (patch-income-ahead > patch-income) [ if not any? other turtles-on patch-ahead 1 [ forward 1 ]] rt 90 set monthly-income patch-income / 12 if num-adults = 2 [ set monthly-income monthly-income * 2 ] end ;; check out which neighbouring patch has the highest income (cribbed from ants) to-report patch-income-at-angle [angle] let p patch-right-and-ahead angle 1 report [patch-income] of p end ;; add monthly income to wealth and subtract cost of living; grade cost of living to income if high enough to update-wealth ;; set income tax rate: after-tax = proportion of income left after paying taxes if income-tax = "none" [ set after-tax 1 ] if income-tax = "flat" [ set after-tax 1 - max-tax-rate / 100 ] if income-tax = "progressive with loopholes for rich" [ set max-income max [ patch-income ] of patches * 2 / 12 if monthly-income >= max-income * 4 / 5 [ set after-tax 1 - 0.6 * (max-tax-rate / 100) ] if monthly-income >= max-income * 3 / 5 and monthly-income < max-income * 4 / 5 [ set after-tax 1 - 0.8 * (max-tax-rate / 100) ] if monthly-income >= max-income * 2 / 5 and monthly-income < max-income * 3 / 5 [ set after-tax 1 - 0.6 * (max-tax-rate / 100) ] if monthly-income >= max-income * 1 / 5 and monthly-income < max-income * 2 / 5 [ set after-tax 1 - 0.4 * (max-tax-rate / 100) ] if monthly-income < max-income * 1 / 5 [ set after-tax 1 - 0.2 * (max-tax-rate / 100) ] ] if income-tax = "progressive no loopholes for rich" [ set max-income max [ patch-income ] of patches * 2 / 12 if monthly-income >= max-income * 4 / 5 [ set after-tax 1 - 1.0 * (max-tax-rate / 100) ] if monthly-income >= max-income * 3 / 5 and monthly-income < max-income * 4 / 5 [ set after-tax 1 - 0.8 * (max-tax-rate / 100) ] if monthly-income >= max-income * 2 / 5 and monthly-income < max-income * 3 / 5 [ set after-tax 1 - 0.6 * (max-tax-rate / 100) ] if monthly-income >= max-income * 1 / 5 and monthly-income < max-income * 2 / 5 [ set after-tax 1 - 0.4 * (max-tax-rate / 100) ] if monthly-income < max-income * 1 / 5 [ set after-tax 1 - 0.2 * (max-tax-rate / 100) ] ] ;; set redistribution if income-redistribution = "none" [ set monthly-bi 0 ] if income-redistribution = "universal demogrant" ;; give everyone the same top-up [ if num-adults = 1 [ set monthly-bi max-bi-indiv / 12 ] if num-adults = 2 [ if BI-unit = "BI by individual" [ set monthly-bi 2 * max-bi-indiv / 12 ] if BI-unit = "BI by family" [ set monthly-bi max-bi-family / 12 ] ] ] if income-redistribution = "NIT with clawback" ;; calculate partial BI after clawback [ if num-adults = 1 [ set monthly-bi max-bi-indiv / 12 ] if num-adults = 2 [ if BI-unit = "BI by individual" [ set monthly-bi 2 * max-bi-indiv / 12 ] if BI-unit = "BI by family" [ set monthly-bi max-bi-family / 12 ] ] ifelse (monthly-income * after-tax * (clawback / 100)) < monthly-bi ;; is after tax income too high with clawback?, if not proceed [ set monthly-bi monthly-bi - (monthly-income * after-tax * (clawback / 100)) ] ;; for NIT, if after-tax income is too high, don't give a BI [ set monthly-bi 0 ] ] ;; update amount of BI with amount for children set monthly-bi monthly-bi + monthly-bi * num-children * top-up-children / 100 ;; calculate new wealth ifelse ((monthly-bi + (monthly-income * after-tax)) * 3 / 4) < cost-of-living ;; deduct cost of living [set wealth wealth + monthly-bi + (monthly-income * after-tax) - cost-of-living ] [set wealth wealth + monthly-bi + (monthly-income * after-tax / 4) ] end to color-turtles set max-wealth max [ wealth ] of turtles if wealth < max-wealth / 5 [ set color 5 ] if (wealth >= max-wealth / 5 and wealth < max-wealth * 2 / 5) [ set color 4 ] if (wealth >= max-wealth * 2 / 5 and wealth < max-wealth * 3 / 5) [ set color 3 ] if (wealth >= max-wealth * 3 / 5 and wealth < max-wealth * 4 / 5) [ set color 2 ] if (wealth >= max-wealth * 4 / 5) [ set color 1 ] if wealth <= 0 [ set wealth 1 set color red ] end ;; this procedure recomputes the value of gini-index-reserve ;; and the points in lorenz-points for the Lorenz and Gini-Index plots ;; it is taken directly from Uri Wilensky's Wealth Distribution ABM to update-lorenz-and-gini let sorted-wealths sort [wealth] of turtles let total-wealth sum sorted-wealths let wealth-sum-so-far 0 let index 0 set gini-index-reserve 0 set lorenz-points [] ;; now actually plot the Lorenz curve -- along the way, we also ;; calculate the Gini index. ;; (see the Info tab for a description of the curve and measure) repeat count turtles [ set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths) set lorenz-points lput ((wealth-sum-so-far / total-wealth) * 100) lorenz-points set index (index + 1) set gini-index-reserve gini-index-reserve + (index / num-households) - (wealth-sum-so-far / total-wealth) ] end ; Copyright 1998 Uri Wilensky and 2018 Sarah Robertson ; See Info tab for full copyright and license.
There is only one version of this model, created almost 6 years ago by Sarah Robertson.
Attached files
File | Type | Description | Last updated | |
---|---|---|---|---|
Basic Income - Households.png | preview | Preview for 'Basic Income - Households' | almost 6 years ago, by Sarah Robertson | Download |
This model does not have any ancestors.
This model does not have any descendants.