绒毛的吸收
Model was written in NetLogo 6.2.2
•
Viewed 133 times
•
Downloaded 13 times
•
Run 0 times
Do you have questions or comments about this model? Ask them here! (You'll first need to log in.)
Info tab cannot be displayed because of an encoding error
Comments and Questions
Please start the discussion about this model!
(You'll first need to log in.)
Click to Run Model
globals [ tick-advance-amount ; how much we advance the tick counter this time through max-tick-advance-amount ; the largest tick-advance-amount is allowed to be init-avg-speed init-avg-energy ; initial averages particle-size toggle-red-state toggle-green-state min-particle-energy max-particle-energy particles-to-add show-wall-hits? max-particles #particles #-green-particles #-purple-particles #-orange-particles villi-slider-moved? old-villi-slider-value bottom-wall-ycor tracker-init-particles permeability particle-to-watch total-initial-particles total-absorbed-particles ] breed [ particles particle ] breed [ flows flow ] breed [ walls wall ] breed [ edges edge ] particles-own [ speed mass energy ; particles info last-collision color-type absorbed? swept? large? ] patches-own [ is-blood? blood-heading ] walls-own [ energy valve-1? valve-2? pressure? surface-energy ] to setup clear-all reset-ticks ask patches [set pcolor white] set particle-size 2 set max-tick-advance-amount 0.02 set show-wall-hits? false set particles-to-add 2 set old-villi-slider-value 绒毛-高度 set villi-slider-moved? true set bottom-wall-ycor min-pycor + 3 set-default-shape walls "cell" set tracker-init-particles 初始-小的-食物微粒 set permeability 50 set particle-to-watch nobody redraw-villi? draw-blood-stream draw-edges make-small-particles make-large-particles set total-initial-particles count particles set total-absorbed-particles 0 do-plotting end to go if ticks < 模型结束在 [ redraw-villi? ask particles with [not absorbed?] [ bounce ] ask flows [move-flows] ask particles with [not absorbed?] [ move ] ask particles with [absorbed? and pycor != min-pycor] [seep-toward-blood] ask particles with [swept?] [sweep-with-blood] ; ask particles with [not absorbed?] [ check-for-collision ] ask particles with [not absorbed? and any? walls-here ] [ rewind-to-bounce ] ask particles with [not absorbed? and any? walls-here ] [ remove-from-walls ] check-watched-particle tick-advance tick-advance-amount calculate-tick-advance-amount check-particle-flow-out-of-system do-plotting display ] end to check-watched-particle if particle-to-watch != nobody [ ask particle-to-watch [ if pycor = max-pycor [rp] ] ] end to check-particle-flow-out-of-system ask particles [ if pxcor = max-pxcor and visualize-food-in-blood-flow-as = "going someplace else" [set total-absorbed-particles total-absorbed-particles + 1 set hidden? true] ] end to watch-a-particle set particle-to-watch one-of particles with [pycor < (max-pycor - 2)] if count particles > 0 [ watch one-of particles ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;BUILD VILLI ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to shove-particles ask particles-here with [pycor <= (bottom-wall-ycor + 绒毛-高度)] [set ycor (bottom-wall-ycor + 绒毛-高度)] end to add-wall shove-particles sprout 1 [ set breed walls set color gray ;set is-blood? false initialize-this-wall ] end to add-hidden-wall shove-particles sprout 1 [ set breed walls set color gray set is-blood? false set hidden? true initialize-this-wall ] end to initialize-blood set breed walls set color red set size 1.0 set is-blood? true set heading 90 set shape "square" set color [255 0 0 150] end to add-blood-up shove-particles set blood-heading 0 set is-blood? true sprout 1 [initialize-blood ] end to add-blood-down shove-particles set blood-heading 180 set is-blood? true sprout 1 [initialize-blood] end to add-blood-right shove-particles set blood-heading 90 set is-blood? true sprout 1 [initialize-blood] end to redraw-villi? if old-villi-slider-value != 绒毛-高度 [set villi-slider-moved? true set old-villi-slider-value 绒毛-高度] if villi-slider-moved? [ redraw-villi set villi-slider-moved? false ] end to redraw-villi ask walls with [pycor >= (min-pycor + 3)] [die] ask patches with [pycor >= (min-pycor + 3)] [set is-blood? false] ;; draw horizontal line until reaching a point where a villi is... then call villi build...skip and continue let distance-between-villi 5 ask patches with [pxcor >= min-pxcor and pxcor <= max-pxcor and pycor = max-pycor ] [add-hidden-wall] let this-pxcor min-pxcor let this-pycor bottom-wall-ycor let villi-width 5 let this-width-counter 0 let this-lift false repeat (max-pxcor - min-pxcor + 1) [ ifelse ((this-pxcor mod 11 >= 0) and (this-pxcor mod 11 <= 4)) and (this-pxcor >= (min-pxcor + 3) and this-pxcor <= (max-pxcor - 5)) [set this-pycor (bottom-wall-ycor + 绒毛-高度) set this-lift true] [set this-pycor bottom-wall-ycor] ask patches with [pxcor = this-pxcor and pycor = this-pycor] [add-wall] ;; draw-vertical wall if this-lift [ ask patches with [pxcor = this-pxcor and pycor >= bottom-wall-ycor and pycor <= this-pycor] [ if (this-pxcor mod 11 = 0 and pycor < (this-pycor)) [add-wall] if (this-pxcor mod 11 = 1 and pycor < (this-pycor - 1)) [add-blood-up] if (this-pxcor mod 11 = 2 and pycor < (this-pycor - 2))[add-wall] if ((this-pxcor mod 11 = 2 or this-pxcor mod 11 = 1) and (pycor = (this-pycor - 1) ))[add-blood-right] if ((this-pxcor mod 11 = 2 ) and ( pycor = (this-pycor - 2)))[add-blood-right] if (this-pxcor mod 11 = 3 and pycor <= (this-pycor - 1)) [add-blood-down] if (this-pxcor mod 11 = 4 and pycor < (this-pycor)) [add-wall] ] set this-lift false ] set this-pxcor this-pxcor + 1 ] end to draw-blood-stream let blood-patches patches with [pxcor >= min-pxcor and pxcor <= max-pxcor and pycor < bottom-wall-ycor and pycor >= min-pycor ] ask blood-patches [add-blood-right] ask n-of 30 blood-patches [ make-a-floater ] end to make-a-floater let this-color (5 + random-float 20) let this-list [0 0 0] set this-list lput this-color this-list sprout 1 [ set breed flows set color this-list set shape "square" ] end to draw-edges ask patches with [pycor = (max-pycor) and pxcor < max-pxcor ][ sprout 1 [ set breed edges set shape "square 3" set size 1.05 set color gray + 2 ] ] ask patches with [pycor < (max-pycor) and pxcor = max-pxcor ][ sprout 1 [ set breed edges set shape "square 4" set size 1.05 set color gray + 2 ] ] ask patches with [pycor =(max-pycor) and pxcor = max-pxcor ][ sprout 1 [ set breed edges set shape "square" set size 1.05 set color gray + 2 ] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;WALL INTERACTION;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GAS MOLECULES MOVEMENT;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to bounce ; particles procedure ; get the coordinates of the patch we'll be on if we go forward 1 let bounce-patch nobody let bounce-patches nobody let hit-angle 0 let this-patch patch-here let new-px 0 let new-py 0 let visible-wall nobody set bounce-patch min-one-of walls in-cone ((sqrt (2)) / 2) 180 with [ patch-here != this-patch ] [ distance myself ] if bounce-patch != nobody [ set new-px [ pxcor ] of bounce-patch set new-py [ pycor ] of bounce-patch set visible-wall walls-on bounce-patch if any? visible-wall [ ifelse (random 100 > permeability or (pycor >= (max-pycor - 1) ) or large? ) [ if bounce-patch != patch-here [ set hit-angle towards bounce-patch ] ;; new bounce patch code ifelse (hit-angle <= 135 and hit-angle >= 45) or (hit-angle <= 315 and hit-angle >= 225) [ set heading (- heading) ][ set heading (180 - heading) ] set absorbed? false] [set absorbed? true] ] ] end to rewind-to-bounce ; particles procedure ; attempts to deal with particle penetration by rewinding the particle path back to a point ; where it is about to hit a wall ; the particle path is reversed 49% of the previous tick-advance-amount it made, ; then particle collision with the wall is detected again. ; and the particle bounces off the wall using the remaining 51% of the tick-advance-amount. ; this use of slightly more of the tick-advance-amount for forward motion off the wall, helps ; insure the particle doesn't get stuck inside the wall on the bounce. let bounce-patch nobody let bounce-patches nobody let hit-angle 0 let this-patch nobody let new-px 0 let new-py 0 let visible-wall nobody bk (speed) * tick-advance-amount * .49 set this-patch patch-here set bounce-patch min-one-of walls in-cone ((sqrt (2)) / 2) 180 with [ self != this-patch ] [ distance myself ] if bounce-patch != nobody [ set new-px [pxcor] of bounce-patch set new-py [pycor] of bounce-patch set visible-wall walls-on bounce-patch if any? visible-wall with [not hidden?] [ set hit-angle towards bounce-patch ifelse (hit-angle <= 135 and hit-angle >= 45) or (hit-angle <= 315 and hit-angle >= 225) [ set heading (- heading) ][ set heading (180 - heading) ] ] ] fd (speed) * tick-advance-amount * 0.75 end to move ; particles procedure if patch-ahead (speed * tick-advance-amount) != patch-here [ set last-collision nobody ] ifelse (not large?) [rt random 30 lt random 30][rt random 10 lt random 10] fd (speed * tick-advance-amount * 0.75) if ycor > (bottom-wall-ycor + 绒毛-高度) [set xcor xcor - .05] end to move-flows set heading 90 fd (7 * tick-advance-amount * 0.75) end to seep-toward-blood let flex-threshold .2 + random-float .05 let all-blood patches with [is-blood?] let target-blood-patch min-one-of all-blood [distance myself ] ; show distance target-blood let final-heading towards target-blood-patch let heading-difference ((final-heading - heading) / 20) set heading heading + heading-difference let blood-near-me all-blood with [distance myself < flex-threshold] ifelse not any? blood-near-me [fd (2 * tick-advance-amount) ][set swept? true] end to sweep-with-blood let old-heading heading let heading-difference ((old-heading - heading) / 20) if (is-blood? and swept?) [set heading blood-heading fd (3 * tick-advance-amount) set heading heading + heading-difference] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GAS MOLECULES COLLISIONS;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;from GasLab to calculate-tick-advance-amount ; tick-advance-amount is calculated in such way that even the fastest ; particles will jump at most 1 patch delta in a ticks tick. As ; particles jump (speed * tick-advance-amount) at every ticks tick, making ; tick delta the inverse of the speed of the fastest particles ; (1/max speed) assures that. Having each particles advance at most ; one patch-delta is necessary for it not to "jump over" a wall ; or another particles. ifelse any? particles with [ speed > 0 ] [ set tick-advance-amount min list (1 / (ceiling max [speed] of particles )) max-tick-advance-amount ][ set tick-advance-amount max-tick-advance-amount ] end to check-for-collision ; particles procedure ; Here we impose a rule that collisions only take place when there ; are exactly two particles per patch. We do this because when the ; student introduces new particles from the side, we want them to ; form a uniform wavefront. ; ; Why do we want a uniform wavefront? Because it is actually more ; realistic. (And also because the curriculum uses the uniform ; wavefront to help teach the relationship between particles collisions, ; wall hits, and pressure.) ; ; Why is it realistic to assume a uniform wavefront? Because in reality, ; whether a collision takes place would depend on the actual headings ; of the particles, not merely on their proximity. Since the particles ; in the wavefront have identical speeds and near-identical headings, ; in reality they would not collide. So even though the two-particles ; rule is not itself realistic, it produces a realistic result. Also, ; unless the number of particles is extremely large, it is very rare ; for three or particles to land on the same patch (for example, ; with 400 particles it happens less than 1% of the time). So imposing ; this additional rule should have only a negligible effect on the ; aggregate behavior of the system. ; ; Why does this rule produce a uniform wavefront? The particles all ; start out on the same patch, which means that without the only-two ; rule, they would all start colliding with each other immediately, ; resulting in much random variation of speeds and headings. With ; the only-two rule, they are prevented from colliding with each other ; until they have spread out a lot. (And in fact, if you observe ; the wavefront closely, you will see that it is not completely smooth, ; because collisions eventually do start occurring when it thins out while fanning.) if count other particles-here in-radius 1 = 1 [ ; the following conditions are imposed on collision candidates: ; 1. they must have a lower who number than my own, because collision ; code is asymmetrical: it must always happen from the point of view ; of just one particles. ; 2. they must not be the same particles that we last collided with on ; this patch, so that we have a chance to leave the patch after we've ; collided with someone. let candidate one-of other particles-here with [ who < [ who ] of myself and myself != last-collision ] ;; we also only collide if one of us has non-zero speed. It's useless ;; (and incorrect, actually) for two particles with zero speed to collide. if (candidate != nobody) and (speed > 0 or [ speed ] of candidate > 0) [ collide-with candidate set last-collision candidate ask candidate [ set last-collision myself ] ] ] end ; implements a collision with another particles. ; ; THIS IS THE HEART OF THE particles SIMULATION, AND YOU ARE STRONGLY ADVISED ; NOT TO CHANGE IT UNLESS YOU REALLY UNDERSTAND WHAT YOU'RE DOING! ; ; The two particles colliding are self and other-particles, and while the ; collision is performed from the point of view of self, both particles are ; modified to reflect its effects. This is somewhat complicated, so I'll ; give a general outline here: ; 1. Do initial setup, and determine the heading between particles centers ; (call it theta). ; 2. Convert the representation of the velocity of each particles from ; speed/heading to a theta-based vector whose first component is the ; particle's speed along theta, and whose second component is the speed ; perpendicular to theta. ; 3. Modify the velocity vectors to reflect the effects of the collision. ; This involves: ; a. computing the velocity of the center of mass of the whole system ; along direction theta ; b. updating the along-theta components of the two velocity vectors. ; 4. Convert from the theta-based vector representation of velocity back to ; the usual speed/heading representation for each particles. ; 5. Perform final cleanup and update derived quantities. to collide-with [ other-particles ] ;; particles procedure ; PHASE 1: initial setup ; for convenience, grab quantities from other-particles let mass2 [ mass ] of other-particles let speed2 [ speed ] of other-particles let heading2 [ heading ] of other-particles ; since particles are modeled as zero-size points, theta isn't meaningfully ; defined. we can assign it randomly without affecting the model's outcome. let theta (random-float 360) ; PHASE 2: convert velocities to theta-based vector representation ; now convert my velocity from speed/heading representation to components ; along theta and perpendicular to theta let v1t (speed * cos (theta - heading)) let v1l (speed * sin (theta - heading)) ;; do the same for other-particles let v2t (speed2 * cos (theta - heading2)) let v2l (speed2 * sin (theta - heading2)) ; PHASE 3: manipulate vectors to implement collision ; compute the velocity of the system's center of mass along theta let vcm (((mass * v1t) + (mass2 * v2t)) / (mass + mass2) ) ; now compute the new velocity for each particles along direction theta. ; velocity perpendicular to theta is unaffected by a collision along theta, ; so the next two lines actually implement the collision itself, in the ; sense that the effects of the collision are exactly the following changes ; in particles velocity. set v1t (2 * vcm - v1t) set v2t (2 * vcm - v2t) ; PHASE 4: convert back to normal speed/heading ; now convert my velocity vector into my new speed and heading set speed sqrt ((v1t ^ 2) + (v1l ^ 2)) set energy (0.5 * mass * speed ^ 2) ; if the magnitude of the velocity vector is 0, atan is undefined. but ; speed will be 0, so heading is irrelevant anyway. therefore, in that ; case we'll just leave it unmodified. if v1l != 0 or v1t != 0 [ set heading (theta - (atan v1l v1t)) ] ;; and do the same for other-particle ask other-particles [ set speed sqrt ((v2t ^ 2) + (v2l ^ 2)) set energy (0.5 * mass * (speed ^ 2)) if v2l != 0 or v2t != 0 [ set heading (theta - (atan v2l v2t)) ] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; initialization procedures ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to initialize-this-wall ; set valve-1? false ; set valve-2? false ; set pressure? false ifelse random 2 = 0 [set shape "cell"][set shape "cell2"] set color [255 255 255 120] let turn random 4 rt (turn * 90) end to make-small-particles create-particles 初始-小的-食物微粒 [ setup-particles false set shape "small-molecule" random-position ] end to make-large-particles create-particles 初始-大的-食物微粒 [ setup-particles true set shape "large-molecule" random-position ] end to setup-particles [is-large]; particles procedure ; set shape "circle" set size particle-size set energy 150 set color-type (violet - 3) set color color-type set mass (10) ; atomic masses of oxygen atoms set speed speed-from-energy set last-collision nobody set absorbed? false set large? is-large set swept? false end ; Place particles at random, but they must not be placed on top of wall atoms. ; This procedure takes into account the fact that wall molecules could have two possible arrangements, ; i.e. high-surface area ot low-surface area. to random-position ;; particles procedure let open-patches nobody let open-patch nobody set open-patches patches with [not any? turtles-here and pxcor != max-pxcor and pxcor != min-pxcor and pycor != min-pycor and pycor != max-pycor] set open-patch one-of open-patches ; Reuven added the following "if" so that we can get through setup without a runtime error. if open-patch = nobody [ user-message "No open patches found. Exiting." stop ] setxy ([ pxcor ] of open-patch) ([ pycor ] of open-patch) set heading random 360 fd random-float .4 end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; wall penetration error handling procedure ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; if particles actually end up within the wall to remove-from-walls let this-wall walls-here with [ not hidden? ] if count this-wall != 0 [ let available-patches patches with [ not any? walls-here ] let closest-patch nobody if (any? available-patches) [ set closest-patch min-one-of available-patches [ distance myself ] set heading towards closest-patch setxy ([ pxcor ] of closest-patch) ([ pycor ] of closest-patch) ] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GRAPHS;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to do-plotting update-plots end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;REPORTERS;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to-report speed-from-energy report sqrt (2 * energy / mass) end to-report energy-from-speed report (mass * speed * speed / 2) end to-report limited-particle-energy let limited-energy energy if limited-energy > max-particle-energy [ set limited-energy max-particle-energy ] if limited-energy < min-particle-energy [ set limited-energy min-particle-energy ] report limited-energy end ; Copyright 2006 Uri Wilensky. ; See Info tab for full copyright and license.
There is only one version of this model, created over 2 years ago by hui min.
This model does not have any ancestors.
This model does not have any descendants.