Modified Complex Contagion
Model was written in NetLogo 6.2.2
•
Viewed 108 times
•
Downloaded 6 times
•
Run 0 times
Do you have questions or comments about this model? Ask them here! (You'll first need to log in.)
Info tab cannot be displayed because of an encoding error
Comments and Questions
Please start the discussion about this model!
(You'll first need to log in.)
Click to Run Model
;; this model adds a simple rewiring procedure to Joshua Becker's complex contagion model in order to simulate ;; the effects of additional links as might result from a key word search on a social network ;; see Hahn, U., Maes, M., & Grossi, D. (2023) for discussion of this model and its outputs globals [ k ;; determines the average number of neighbors each node has this-cluster ;; a tool used by the identify-clusters procedure saturated? ;; When this is TRUE, no more agents can be activated ;with_search ;; when this = 1 search is activated ] turtles-own [ cluster ;; a tool used by the identify-clusters procedure distance-from-other-turtles ;; list of distances of this node from other turtles, used by the identify-clusters procedure attempted? ;; keeps track of which turtles have state-checked since a change in the system ;; the attempted? variable is used to help the model be more efficient ] links-own [ rewired? ;; keeps track of whether the link has been rewired or not, used by the rewire-all procedure ] ;; The "setup" procedure sets up the model. ;; First, it creates the network using "rewire-all." ;; Then, it seeds the contagion to setup clear-all ask patches [ set pcolor white ] set k 4 rewire-all ask turtles [ set color black set attempted? false ] set saturated? false if count turtles > 0 [ seed-contagion ] reset-ticks end ;; The "construct-agent" procedure simply constructs an agent. ;; In more complex models, a procedure like this ;; can be helpful in generating agents with many different ;; parameters or rules. to construct-agent ;; turtles-own agent constructor set shape "circle" set label "" end ;; The "restart" procedure resets the contagion process without ;; changing the network structure. to restart ask turtles [ set color black set attempted? false ] set saturated? false if count turtles > 0 [ seed-contagion ] set-current-plot "success of contagion" clear-plot reset-ticks end ;; The "run-step" procedure runs a single step of the diffusion process. ;; With each step, the model tries all the agents that are black (not red). ;; When an agent is checked, it either updates (turns red) or remains the same. ;; If the agent doesn't change, we set attempted? to TRUE for that turtle. to run-step ;; Check to see whether there are any turtles that might still become activated. ;; If not, set "saturated?" to true and stop the function. ;; If all the agents are red (none of them are black) then we know it's saturated ;; We also know it's saturated if there are zero black agents who we haven't checked already. if count turtles with [ color = black ] = 0 [ set saturated? true stop ] if count turtles with [ color = black and attempted? = false ] = 0 [ set saturated? true stop ] if not saturated? [ ask one-of turtles with [color = black ] [ let count-triggered 0 set count-triggered count link-neighbors with [color = red] ;; If enough neighbors are active (red), an inactive (black) agent will be activated. ;; Once a turtle turns from black to red, it's possible their neighbors may wish to change as well. ;; Thus, whenever a turtle is activated, we reset attempted? to false for the other turtles. ifelse count-triggered >= threshold [ set color red ask turtles with [ self != myself ] [ set attempted? false ] ] [ set attempted? true ] ] ] ;let temp random 100 ;if temp < 10 ;[ if with_search = 1 [search] ;] ;set temp 100 tick end ;; This procedure "seeds" the contagion by randomly selecting a turtle ;; and activating that turtle, as well as all of their neighbors (turning them red) to seed-contagion ask one-of turtles [ ask link-neighbors [ set color red ] set color red ] end ;; The "create-ringlat" procedure creates a new ring lattice. ;; All this procedure does is create N turtles, set their color black, ;; and then run the "wire-ringlat" procedure. to create-ringlat crt N [ set color black construct-agent ] wire-ringlat end ;; The "wire-ringlat" procedure contains the machinery needed to wire a ring lattice. ;; The parameter k determines the number of neighbors each node will have -- in this ;; version, k is fixed. However, this parameter can be turned into a variable controlled ;; from the interface. to wire-ringlat layout-circle (sort turtles) max-pxcor - 1 layout-circle (sort turtles with [ who mod 2 = 0] ) max-pxcor - 4 ;; iterate over the turtles let ni 0 while [ni < count turtles] [ ;; make edges with the next two neighbors ;; this makes a lattice with average degree of 4 let z 1 while [z <= floor (k / 2)] [ ask turtle ni [ create-link-with turtle ((ni + z) mod count turtles) [ set rewired? false ] ] set z z + 1 ] set ni ni + 1 ] end ;; the identify-clustesr and grow-clusters procedure ensure count the number of ;; components in the network. This code is inspired by the NetLogo model "Dissemination of Culture" ;; by Iain Weaver. You can find this model at: http://ccl.northwestern.edu/netlogo/models/community/Dissemination%20of%20Culture to-report identify-clusters let max-cluster 0 let num-clusters 0 let seed one-of turtles ask turtles [ set cluster nobody ] while [seed != nobody] [ ask seed [ set cluster self set num-clusters num-clusters + 1 set this-cluster 1 grow-cluster ] if this-cluster > max-cluster [ set max-cluster this-cluster] set seed one-of turtles with [cluster = nobody] ] report list num-clusters max-cluster end to grow-cluster ask link-neighbors with [cluster = nobody] [ if cluster = nobody [ set this-cluster this-cluster + 1 ] set cluster [cluster] of myself grow-cluster ] end ;; The "rewire-all" procedure generats a Small-World network according to the algorithm ;; developed by Watts & Strogatz (1998). This code is adapted from the Small Worlds NetLogo model ;; developed by Uri Wilensky. Original code Copyright 2005 Uri Wilensky. See info tab for more details. to rewire-all create-ringlat ;; set up a variable to see if the network is connected let success? false ;; if we end up with a disconnected network, we keep trying, because the APL distance ;; isn't meaningful for a disconnected network. let count-tries 0 while [not success?] [ ;; kill the old lattice, reset neighbors, and create new lattice ask links [ die ] wire-ringlat ; set number-rewired 0 ask links [ ;; whether to rewire it or not? if (random-float 1) < p [ ;; "a" remains the same let node1 end1 ;; if "a" is not connected to everybody if [ count link-neighbors ] of end1 < (count turtles - 1) [ ;; find a node distinct from node1 and not already a neighbor of node1 let node2 one-of turtles with [ (self != node1) and (not link-neighbor? node1) ] ;; wire the new edge ask node1 [ create-link-with node2 [ set color cyan set rewired? true ] ] ; set number-rewired number-rewired + 1 ;; counter for number of rewirings set rewired? true ] ] ;; remove the old edge if (rewired?) [ die ] ] set success? ( item 0 identify-clusters = 1 ) set count-tries count-tries + 1 if ( count-tries > 1000 ) [ set success? true print "couldn't make connected network! try different parameters!" ] ] end ;; This procedure rewires ties to mirror effects of search. to search ;; make sure num-turtles is setup correctly else run setup first if count turtles != N [ setup ] if (random-float 1) < .02 ;;good num is .02 [ let potential-edges links with [ not rewired? ] ifelse any? potential-edges [ ask one-of potential-edges [ ;; "a" remains the same let node1 end1 ;; if "a" is not connected to everybody if [ count link-neighbors ] of end1 < (count turtles - 1) [ ;; find a node distinct from node1 and not already a neighbor of node1 let node2 one-of turtles with [ (self != node1) and (not link-neighbor? node1) ] ;; wire the new edge ask node1 [ create-link-with node2 [ set color blue set rewired? true ] ] let node3 one-of turtles with [ (self != node1) and (not link-neighbor? node1) ] ;; wire the new edge ask node1 [ create-link-with node3 [ set color green set rewired? true ] ] let node4 one-of turtles with [ (self != node1) and (not link-neighbor? node1) ] ;; wire the new edge ask node1 [ create-link-with node4 [ set color green set rewired? true ] ] ask node1 [ set shape "star"] ;ask potential-edges [set rewired? true] ;; remove the old edge die ] ] ] [ print "all rewired" ] ] end ;; This procedure counts the fraction (percent) of nodes who are activated, that is 'infected' (red) to-report percent-saturated report ((count turtles with [color = red ] ) / (count turtles)) end ;; This procedure counts the percentage of nodes who have had links added through 'search' to-report percent-searched report ((count turtles with [shape = "star" ] ) / (count turtles)) end ;; This procedure counts the number of nodes who have had links added through 'search' to-report searched report ((count turtles with [shape = "star" ] )) end ;; This procedure counts the number of links in the network to-report link-total report (count links) end
There is only one version of this model, created almost 2 years ago by Ulrike Hahn.
Attached files
File | Type | Description | Last updated | |
---|---|---|---|---|
Modified Complex Contagion.png | preview | Model Preview | almost 2 years ago, by Ulrike Hahn | Download |
This model does not have any ancestors.
This model does not have any descendants.